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ABSTRACT 

 Vitamin D deficiency has been reported to affect 30% of the American 

population, owing to poor dietary intake and insufficient sun exposure. Pregnant and 

lactating women, the elderly, and individuals with increased skin melanin pigmentation 

are at especially high risk for developing poor vitamin D status.  The classical, hormonal 

actions of vitamin D related to mineral metabolism and skeletal health are well-

established. More recently, however, evidence suggests that vitamin D deficiency 

increases the risk for chronic diseases such as obesity, diabetes, cancer and autoimmune 

disorders. Dietary eggs represent a natural whole food source of vitamin D3 as well as 

25-hydroxycholecalciferol (25D), the vitamin D metabolite that represents an individual’s 

status. The objective of the studies described in this dissertation were to determine if a 

whole egg-based diet could maintain vitamin D status in 1) Zucker Diabetic Fatty (ZDF) 

rats, a well-characterized animal model of type 2 diabetes (T2D), 2) Streptozotocin-

induced type 1 diabetic (T1D) rats, and 3) in Sprague Dawley rats with dextran sulfate 

sodium-induced colitis.  

In the first study described in this dissertation, male ZDF rats (n = 12) and their 

lean counterparts (n = 12) were randomized to one of two dietary treatment groups, a 

casein- or whole egg-based diet, for 8 weeks. Both diets contained 25 µg 

cholecalciferol/kg diet, provided by the vitamin mix. The whole egg-based diet contained 

an additional 12.6 µg cholecalciferol/kg diet; thus, the whole egg-based diet provided a 

total of 37.6 µg cholecalciferol/kg diet. Both diets provided protein at 20% (w/w) and 

contained the same lipid content by the addition of corn oil to the casein-based diet to 

match the lipid contribution by the addition of whole egg. Whole egg consumption 
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attenuated both hyperglycemia and hypertriglyceridemia, as well as reduced weight gain 

in ZDF rats compared to casein-fed diabetic rats.  Circulating 25D was lower in casein-

fed ZDF rats compared to lean controls; however, ZDF rats fed whole egg exhibited the 

same circulating 25D concentrations as casein-fed lean rats. These data suggest that 

dietary whole egg can attenuate metabolic anomalies, as well as maintain normal 

circulating 25D concentrations in T2D rats.  

This second study described in this dissertation compared whole egg consumption 

to supplemental cholecalciferol with respect to vitamin D balance, body weight gain, and 

body composition in T2D rats. Male ZDF rats (n = 24) and their lean controls (n = 24) 

were randomly assigned to one of 3 dietary treatment groups: a casein-based diet (CAS), 

a dried whole egg-based diet (WE), or a casein-based diet containing supplemental 

cholecalciferol (CAS+D) at the same level of cholecalciferol provided by the dried whole 

egg-based diet (37.6 µg/kg diet). All diets provided protein at 20% (w/w) and contained 

the same lipid contribution by the addition of whole egg. Rats were fed their respective 

diets for 8 weeks. Weight gain and percent body fat were reduced by approximately 20% 

and 11%, respectively, in ZDF rats fed WE compared to ZDF rats fed CAS or CAS+D. 

ZDF rats fed CAS had 21% lower serum 25D concentrations than lean rats fed CAS. In 

ZDF rats, WE consumption increased serum 25D concentrations 130% compared to 

CAS, whereas consumption of CAS+D increased serum 25(OH)D concentrations 35% 

compared to CAS. Our data suggest that dietary consumption of whole egg is more 

effective than supplemental cholecalciferol in maintaining circulating 25D concentrations 

in T2D rats. Furthermore, whole egg consumption reduced weight gain in obese T2D 

rats, without effect on body weight in a lean phenotype. These data may support new 
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dietary recommendations targeting obesity and prevention of vitamin D insufficiency in 

T2D. 

The objective of the third study was to investigate the impact of whole egg 

consumption in T1D rats.  Male Sprague Dawley rats were randomly assigned to either a 

casein-based (n = 12) or a whole egg-based diet (n = 6) for 32 days. Both diets provided 

protein at 20% (w/w) and contained the same total lipid content by the addition of corn 

oil to the casein-based diet to match the lipid contribution by the addition of whole egg. 

The vitamin mix in both diets provided 25 µg cholecalciferol/kg diet. The whole egg-

based diet contained an additional 12.6 µg cholecalciferol/kg diet; thus, the whole egg-

based diet provided a total of 37.6 µg cholecalciferol/kg diet. On day 26, all rats in the 

whole egg-based diet group and half of the rats on the casein-based diet received a 

streptozotocin injection to induce T1D for the final week of the experimental period. 

Whole egg consumption attenuated polyuria, proteinuria and renal hypertrophy in T1D 

rats. These data suggest that dietary intervention with whole egg may offer renal 

protection in T1D. Understanding the mechanism underlying the nephroprotective effect 

of dietary whole egg will be a focus of future work. 

The goal of the fourth and final study presented in this dissertation was to 

investigate the impact of whole egg consumption in dextran sulfate sodium (DSS)-

induced colitis. In an initial dose response study, male Sprague Dawley rats (N= 24) were 

maintained on a casein-based diet for 5 weeks and randomly assigned to 0, 3, 4 or 5% 

DSS-treated drinking water for the final 7 days of the study. Serum 25D concentrations 

exhibited a dose-response decrease with respect to increasing DSS concentrations. In a 

follow-up study, Sprague Dawley rats (N=36) were randomly assigned to a casein-, 
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whole egg- or a casein-based diet containing supplemental cholecalciferol at the same 

level of cholecalciferol provided by the dried whole egg-based diet (37.6 µg/kg diet). All 

diets provided protein at 20% (w/w) and contained the same lipid contribution by the 

addition of whole egg. Rats were fed their respective diets for 8 weeks. For the final 7 

days of the study, half of the rats in each group were given 3.5% DSS-treated drinking 

water, based on the results of initial dose response study. Serum 25D concentrations were 

the same between rats fed the casein-based diet and casein-based diet containing 

supplemental cholecalciferol. Rats fed a whole egg-based diet, however, exhibited 

increased serum 25D concentrations that were significantly higher than rats in either the 

other dietary intervention groups, regardless of colitis status. These data suggest that 

whole egg consumption may be more effective than supplemental cholecalciferol at 

increasing circulating 25D concentrations in experimental colitis. 

The studies described in this dissertation indicate that whole egg consumption is 

an effective means of increasing serum 25D concentrations in animal models of diabetes 

and inflammatory bowel disease. Future dose response studies are needed to identify the 

specific quantity of egg consumption that is efficacious with respect to influencing 

vitamin D status and disease complications. 
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CHAPTER 1.    GENERAL INTRODUCTION 

Introduction 

 Vitamin D is a fat-soluble vitamin that is acquired by endogenous synthesis via the 

action of sunlight exposure on the skin. It is also obtained in the diet as vitamin D2, 

commonly found in plants, or as vitamin D3, provided by foods of animal origin and 

supplementation (1, 2). Vitamin D acquired in either manner is physiologically inert and 

once absorbed must undergo two hydroxylations in the body for activation. The first occurs 

in the liver and converts vitamin D to 25-hydroxyvitamin D (25D), the gold standard 

measurement of vitamin D status for an individual. The second occurs primarily in the 

kidney and forms the biologically active 1,25-dihydroxyvitamin D (1,25D) (3, 4). Population 

trends in the U.S. indicate that circulating 25D concentrations are declining and may be the 

result of a combination of decreased dietary intake, limited sunlight exposure, compromised 

vitamin D absorption, or renal insufficiency resulting in decreased conversion of 25D to 

1,25D (5). Additionally, pregnant and lactating women, the elderly and individuals with 

increased skin melanin pigmentation are at especially high risk for developing poor vitamin 

D status (6). In infants and children, vitamin D deficiency causes rickets, a disease 

characterized by the failure of cartilage to mature and mineralize into bone, leading to the 

development of soft bones and skeletal deformities. In adults, depravation of vitamin D 

manifests into osteomalacia that is characterized by defects in bone mineralization caused by 

alterations in calcium and phosphorous absorption and excretion, resulting in weak bones (6). 

The classical, hormonal actions of vitamin D related to mineral metabolism and skeletal 

health are well-established. More recently, however, evidence has demonstrated an 
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association between vitamin D deficiency and a variety of chronic diseases such as obesity, 

diabetes, cancer, and autoimmune disorders (7).  

It is well established that dietary whole eggs contain a variety of nutrients, 

particularly compared to other animal products (8). They have long been promoted for their 

high-quality protein and high nutrient density-to-energy ratio, providing several nutrients in 

excess of its caloric content, particularly vitamin D3 and 25D (8-10). There are no specific 

guidelines for routine egg consumption. As part of a balanced diet, it is suggested to 

incorporate whole egg intake together with a variety of fresh produce, whole grains and lean 

meats (8). Egg consumption has faced a controversary for several decades as a result of the 

initial observational studies that established a link between dietary cholesterol and 

cardiovascular disease risk (11, 12). A growing body of literature, however, demonstrates the 

contrary. Studies show that as much as one egg per day is not detrimental to health (13, 14). 

Apart from the nutritional benefits, fundamentally, eggs are inexpensive and easy to prepare 

(9).  

The objectives of the present research were to determine if a whole egg-based diet 

could maintain vitamin D status in 1) Zucker Diabetic Fatty (ZDF) rats, a well-characterized 

animal model of type 2 diabetes (T2D); 2) Streptozotocin-induced type 1 diabetic (T1D) rats; 

and 3) in Sprague Dawley rats with dextran sulfate sodium-induced colitis. 

 

Dissertation Organization 

This dissertation consists of seven chapters with a general introduction, literature 

review, four manuscripts, and an overall conclusion. The first manuscript titled, “Whole egg 

consumption prevents diminished serum 25-hydroxycholecalciferol concentrations in type 2 

diabetic rats” has been published in the Journal of Agriculture and Food Chemistry. This 
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manuscript reported the maintenance of vitamin D homeostasis and reduced weight gain in a 

T2D animal model. The work presented in the second manuscript compared whole egg 

consumption to supplemental cholecalciferol with respect to vitamin D balance, weight gain, 

and body composition in T2D rats and was published in the Journal of Nutrition. The work 

presented in the third manuscript investigated the impact of whole egg consumption in a T1D 

animal model and was published in the Journal of Agriculture and Food Chemistry. The final 

manuscript evaluated the impact of whole egg consumption in dextran sulfate sodium-

induced colitis and has been prepared for submission to the Journal of Agriculture and Food 

Chemistry. All literature cited is based on the format of the Journal of Nutrition and is listed 

at the end of each chapter. The final chapter describes the overall results and future directions 

of the research presented in this dissertation. 
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CHAPTER 2.    LITERATURE REVIEW 

Diabetes Mellitus 

The number of individuals around the world with diabetes has nearly quadrupled 

since 1980, affecting approximately 422 million people today (1). In the United States, it is 

estimated that 30 million children and adults are living with diabetes (2). The disease is 

characterized by hyperglycemia caused by abnormalities in the secretion of insulin, action of 

insulin, or both. The criteria for diagnosis is as follows: fasting blood glucose concentration 

>126 mg/dL, hemoglobin A1c (HbA1c) > 6.5%, 2-hour plasma glucose > 200 mg/dL 

following an oral glucose tolerance test, as well as presentation of classic hyperglycemia 

symptoms. An individual is said to be diabetic if they satisfy any of the above criteria (3). 

Chronic, uncontrolled hyperglycemia is associated with macrovascular and microvascular 

complications including atherosclerosis, nephropathy, retinopathy and neuropathy. Studies 

have demonstrated that increased oxidative stress, secondary to prolonged elevated blood 

glucose, can contribute to the pathogenesis of these severe vascular complications, and 

includes the formation of free radicals, production of advanced glycation end products, as 

well as activation of the polyol pathway (4-7). The primary treatment goal for diabetes is to 

maintain glucose homeostasis with the intention of minimizing onset of macro- and 

microvascular complications (2).  

 

Type 1 Diabetes (T1D) 

T1D is the result of an immune-mediated destruction of insulin-producing pancreatic 

β-cells. Historically, T1D was considered a disorder in children and adolescents. Though 

onset typically occurs in preadolescence, it is now known that T1D can be diagnosed well 
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into adulthood (8). Upon diagnosis, the hallmark symptoms include polyphagia, polydipsia, 

and polyuria, and may also include hyperglycemia, weight loss or ketonemia (3). The 

etiology of T1D remains poorly understood, owing to the complex interaction between the 

environment, genetics, and the immune system. Generally, it is agreed upon that genetically 

susceptible individuals with a fixed number of β-cells are exposed to an environmental 

trigger, which induces β-cell autoimmunity (9, 10). The immune response is characterized by 

the development of islet reactive autoantibodies, up-regulation of interferons, as well as the 

recruitment of other pro-inflammatory cytokines. This process leads to the activation of 

autoreactive CD8 T-cells capable of destroying β-cells (10). The proliferation and migration 

of CD8 T-cells into the pancreas, with CD4 T-cells and B-cells, results in a progressive loss 

in insulin secretory function (9, 11). CD8+ T-cells are the most predominant population 

identified in insulitis, suggesting a potential pathogenic mechanism. Furthermore, insulitis is 

only present in β-cells, implying that the islet infiltration is a β-cell-driven process (12). One 

of the candidates reported to be associated with impaired T-cell tolerance induction during 

islet autoimmunity onset is the Human Leukocyte Antigen (HLA) complex. HLA is a cell 

surface protein responsible for immune system regulation. It is estimated that HLA provides 

60% of the overall genetic susceptibility in T1D. There are three classes of HLA genes. Class 

II genes are said to have the strongest association with T1D because they encode for 

molecules that contribute to antigen presentation (13). With that said, more remains to be 

determined about the risk factors that contribute to HLA dysregulation and T1D 

pathogenesis.  

MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene 

expression by partially pairing to the 3′, 5′ untranslated regions of their target mRNAs, 
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resulting in translation repression and/or transcript degradation. Growing evidence suggests 

that miRNAs play a crucial role in T1D pathogenesis, including immune system activation 

and β-cell function (14).  In a recent study by Serr et. al (15), miRNA181a was linked to 

impaired tolerance induction and autoimmune activation, via nuclear factor of activated T-

cells 5 (NFAT5). In an in vitro experiment using isolated T-cells from children with early 

stage islet autoimmunity, the investigators determined that enhancing miRNA181a activity 

increases NFAT5 expression and inhibits Forkhead box protein P3 positive (FoxP3+), 

preventing the proper development of T-regulatory cells. In a follow-up study using a 

humanized mouse model, the investigators found that blocking miRNA181a or NFAT5 

reduced murine islet autoimmunity (15).  

In recent years, the influence of the gut microbiota on immune responses has been the 

subject of a number of studies (16, 17). With respect to the risk of developing T1D, evidence 

from in vivo studies using T1D animal models suggests that, even prior to T1D onset, the 

microbial population of the gut differs between rodents that develop diabetes and rodents that 

remain healthy (18, 19).  Wen et. al (20) reported that specific pathogen-free non-obese 

diabetic mice lacking MyD88 protein, the innate immune signaling molecule that identifies 

microbial stimuli, are protected from the development of T1D (20). While additional research 

is needed to investigate the interaction of the intestinal microbes with the innate immune 

system as a factor modifying T1D risk, these studies highlight the prospect of a targeted 

intervention for individuals with T1D. 

Because of its role in the prevention of acute and long-term T1D complications, 

glycemic control is the foundation for managing the disease. Treatment approaches are 

individualized and focus primarily on managing intake of carbohydrates and integrating an 
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insulin regimen to maintain blood glucose concentrations (21). New technologies can assist 

T1D individuals with optimizing glycemic control and decreasing the risk of severe 

hypoglycemia. These include insulin pumps, continuous glucose monitors (CGM), and 

sensor-augmented pumps, which is a “smart” device that combines the technologies of a 

traditional insulin pump with CGM and therapy management software that wirelessly 

transmits glucose readings to the person wearing the device (22). Additionally, pancreatic 

islet cell transplant is a current experimental procedure that involves transferring islets from 

the pancreas of an organ donor into a T1D individual whose blood glucose concentrations are 

difficult to manage (23). The transplant goals are to assist patients with normalizing blood 

glucose concentrations and to decrease the number of hypoglycemic events that patients are 

unaware of (23).  

 

Type 2 Diabetes (T2D) 

T2D accounts for 90-95% of all global diabetes cases (24). It is estimated that by the 

year 2040, 642 million people will be living with T2D secondary to overnutrition, a 

sedentary lifestyle and subsequent weight gain. The primary risk factors for T2D include 

obesity, physical inactivity, family history of T2D, history of gestational diabetes and non-

white race and/or ethnicity (25). T2D is generally characterized by hyperglycemia and 

hyperinsulinemia.  In contrast to T1D, the cause of hyperglycemia is more complex in T2D. 

Individuals with T2D continue to produce insulin, though the metabolism of glucose, in 

response to insulin as well as secretion of insulin, is abnormal (26).  

In a healthy person, insulin secretion is triggered when glucose concentrations are 

increased in the postprandial state. The rise in extracellular glucose stimulates glucose uptake 

in the pancreatic β-cell, via glucose transporter-2 (GLUT2), where glucose is oxidized, 
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leading to a rise in ATP (27). The rise in ATP causes depolarization of the K+ channel, 

which activates the voltage-gated Ca2+ in the plasma membrane, promoting an influx of Ca2+ 

into the β-cell (27). This rise in intracellular Ca2+ concentrations triggers exocytosis of 

insulin-containing secretory granules, from the endoplasmic reticulum (ER) to the plasma 

membrane, and subsequent release of insulin into the portal blood (28). The insulin signaling 

cascade begins when insulin binds to its receptor, activating the tyrosine kinase domain on 

the intracellular beta subunits. The activated receptor transduces its signals to downstream 

effectors, promoting tyrosine phosphorylation of several substrates, including the insulin 

receptor substrate (IRS) and phosphatidylinositol 3- kinase (29). In peripheral tissues, 

glucose transporter-4 (GLUT4) is recruited from the cytosol to the plasma membrane to 

facilitate glucose uptake. In T2D, insulin signaling is impaired. It has been suggested that 

serine, instead of tyrosine, phosphorylation of IRS-1 may be a potential cause of insulin 

resistance, due to the disruption in the insulin signaling cascade (27). As hyperglycemia 

persists, β-cells proliferate in order to compensate for the high demand of insulin. The ability 

of the ER to maintain insulin processing from pro-insulin results in activation of the unfolded 

protein response leading to β-cell stress and eventual apoptosis. Ultimately, there is a 

decrease in insulin release and exacerbation of the hyperglycemic state (29). 

Overweight and obesity are also believed to be a key component in the onset of 

insulin resistance in T2D (30-33). While the exact mechanisms are not fully understood, 

perturbations in the immune-metabolic cross-talk have been implicated. Hotamisligil and 

colleagues (34) were among the first to establish a role for inflammation in obesity, 

demonstrating increased adipose tissue expression of tumor necrosis factor-alpha (TNF-a) in 

human adipocytes (34). Since then, other pro-inflammatory cytokines including interleukin-1 
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(IL-1) and interleukin-6 (IL-6), in addition to TNF-a, have been shown to disrupt insulin 

receptor signaling (31). Specifically, under positive energy balance, as body weight 

increases, excess energy is stored in the adipocyte as triglycerides, leading to adipocyte 

hypertrophy (32). As adipocyte storage reaches its threshold, there is an infiltration of 

macrophages. The adipocyte, along with the resident macrophages, will trigger the secretion 

of these pro-inflammatory cytokines as a mechanism to prevent lipotoxicity by decreasing 

cell mass. As a result, there is an increase in lipolysis and release of free fatty acids into the 

circulation, leading to the development of hypertriglyceridemia, a hallmark sign of T2D in 

newly diagnosed patients. Because the adipocyte fails to expand and adipogenesis is 

compromised, ongoing positive energy balance is coupled to ectopic lipid accumulation in 

the liver and muscle, further promoting local inflammation and insulin resistance (31, 32). 

Through lifestyle and diet modifications, studies have demonstrated a significant 

reduction in the incidence of T2D with a combination of medical nutrition therapy, regular 

exercise, and psychosocial care. This suggests that, unlike T1D, T2D is largely a preventable 

disease (35). Evidence provided by the Diabetes Prevention Program (DPP) showed a 58% 

reduction in T2D, over a 3-year period, following an intensive lifestyle intervention (36). 

Follow-up studies focused on lifestyle interventions have demonstrated a 34-43% sustained 

reduction in the rate of conversion from prediabetes to fulminant T2D over 7-20 years (37-

39). Treatment and management of T2D are not unlike prevention strategies. While glucose 

homeostasis remains a primary focus in the management of T2D, adoption of healthy 

lifestyle habits, blood pressure control and pharmacotherapy for dyslipidemia have 

collectively been shown to reduce hyperglycemia and decrease the onset and progression of 

vascular complications (40). 
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Inflammatory Bowel Disease (IBD) 

According to the Centers for Disease Control and Prevention, in 2015, one-third of 

the adult population in the U.S. had been diagnosed with IBD (41), a chronic, relapsing 

inflammatory condition of the gastrointestinal (GI) tract that consists of two sub-types: 

Crohn’s disease (CD) and ulcerative colitis (UC). Clinically, UC is characterized by 

superficial mucosal inflammation of the colon, rectal bleeding, diarrhea as well as abdominal 

pain (42). In contrast, CD may affect any portion of the GI tract, from the mouth to anus, and 

is characterized by a discontinuous and ulcerous transmural inflammation often involving the 

ileocecal region and may even lead to stricturing or fistulizing of the GI tract. Symptoms of 

CD include abdominal pain, fever, bloody or non-bloody diarrhea, and weight loss (43). The 

exact cause of IBD remains unclear; however, it is thought to be due to the interplay of a 

person’s genetics, immune response, gut microbiome and the environment that result in an 

inappropriate and exacerbated immune response against commensal flora in those who are 

genetically susceptible (44). 

The surface area of the intestinal epithelium is estimated to be 100 m2 and is lined by 

a single layer of intestinal epithelial cells (IEC), serving as a physical barrier to luminal 

contents (45). IECs are made up of several specialized cell types, each with distinct functions 

that, together, support intestinal homeostasis by responding to signals provided by 

commensal microbiota and local leukocyte populations (46). Some of these distinct functions 

of IECs include production and secretion of compounds that influence microbial 

colonization, sampling of the intestinal microenvironment, sensing bacteria that may benefit 

or harm the host, and induction of immune responses. Additionally, the intracellular spaces 

between cells are linked together by junctional complexes. These complexes connect the 
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internal and external environment and are responsible for regulating the passage of ions and 

solutes (47). Apical tight junction (TJ) proteins are a critical component to the maintenance 

of intestinal epithelial barrier function, as they span the space between the apical and 

basolateral membranes and are a key factor in paracellular permeability. The transmembrane 

TJ proteins include occludins, tricellulin, claudins and junctional adhesion molecules. While 

peripheral membrane TJ proteins comprise of zona occuldens and cingulin (47). Disruption 

of any one of these fundamental features of intestinal homeostasis, IEC or TJ proteins, may 

compromise the integrity of the intestinal epithelium and lead to a local immune response 

(46).  

Several environmental factors have demonstrated a significant influence on the risk 

for IBD development and progression, including smoking, diet, antibiotic use, and social 

stress (48). Smoking continues to be the most widely studied environmental factor associated 

with IBD, though it increases the risk for CD while conferring a protective effect against UC 

(49). Studies demonstrate that patients with UC, who are also heavy smokers, exhibit an 

improvement in disease severity and a reduction in surgical intervention needs (48-50). By 

contrast, current smokers have a 2-fold increased risk of CD compared to non-smokers (49, 

51). 

The most consistently described dietary association with IBD has been the intake of 

soluble fiber. Generally, consumption of fruits, vegetables and whole grains has been shown 

to be inversely associated with CD and UC (52, 53). Consumption of a Westernized diet, one 

that is high in red meat intake, refined sugars and saturated fat and low intake of fiber, 

particularly fruits and vegetables, is associated with an increased IBD risk (53-57). There are 

also limited data on whether specific dietary factors impact disease flare. Data from patient 
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surveys exhibits a diverse response regarding specific trigger foods (58, 59). The 

heterogeneity suggests two postulations, either the non-existence of single food patterns that 

trigger disease relapse, or an underlying genetic predisposition, which may influence 

susceptibility to dietary constituents. Rigorous studies of dietary risk factors are needed to 

support dietary recommendations during periods of relapse (48). 

Another environmental factor that has been implicated in IBD risk is antibiotic use 

and the consequent alteration of commensal flora. In a nested case-control study of 36 

children diagnosed with IBD compared with databased-matched controls, 58% of the IBD 

group was reported to have used antibiotics in the first year of life compared to 39% in the 

control group (60). A follow-up study in adults reported a similar trend, where antibiotic use 

2-5 years prior to diagnosis was more common in the IBD group compared to the adults in 

the control group. The same study also identified a dose-dependent effect with increasing use 

of antibiotic prescriptions in IBD cases (61). On the contrary, antibiotics are widely used to 

manage IBD activity and relapse (48, 62, 63).  

Some studies have shown that stress is associated with higher incidences of relapse in 

IBD (64, 65). Because the hypothalamus-pituitary-adrenal (HPA) axis and the immune 

system work in tandem when the body encounters a stress-induced situation, it is thought that 

disruptions to the HPA axis-immune system crosstalk could lead to disorders characterized 

by inflammation due to abnormal responses to stressful stimuli (66). However, in an 

evidenced-based literature review by Abegunde and colleagues, little evidence was found to 

support an association between stress and increased IBD incidence (67).  

The genetics of IBD are complicated and may be polygenic (44). Genome-wide 

association studies suggest that improper function of innate and adaptive immunity 
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contribute to the onset of IBD (68-71). To date, an estimated 215 genetic loci have been 

identified (72). The majority of susceptibility variants are associated with both UC and CD, 

while others are exclusive to each disorder. In general, the IBD-associated loci are enriched 

for genes involved in intestinal epithelial barrier function, T-cell function, cytokine 

production and autophagy, among others (73-75). A variant in the Muc2 gene confers IBD 

susceptibility in humans. Muc2 encodes for mucin, a primary component of the protective 

mucous layer that lines the intestine (44). In a study using Muc2 knockout mice, researchers 

determined that, by 5 weeks of age, Muc2-deficient mice demonstrated clinical colitis 

symptoms which were exacerbated as the mice aged. Analysis of colonic tissue exhibited 

mucosal thickening, increased proliferation and superficial erosions (76).  A frameshift 

mutation to nucleotide-binding oligomerization domain containing 2 (NOD2) was the first 

susceptibility gene identified for CD (77). NOD2 is an intracellular pattern recognition 

receptor and activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-

kB), making it responsive to bacterial lipopolysaccharides. A genetic defect in NOD2 leads 

to increased inflammation due to impaired bacterial clearance. Moreover, a mutation in 

NOD2 has also been shown to result in suppression of the production of the anti-

inflammatory cytokine interleukin 10 (IL-10) (78, 79). 

Autophagy is a key process required for intracellular homeostasis following infection, 

mitochondrial damage or ER stress, and as such has a crucial role in cell-intrinsic defense 

against intracellular infections (46). The T300A disease-risk allele of the autophagy gene 

ATG16L1 is associated with an increased risk of CD. Patients with CD who are homozygous 

for the T300A mutation possess Paneth cell abnormalities, suggesting that the secretory 

granule pathway is impaired (80). Similarly, in a hypomorphic mouse model of the 
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ATG16L1 mutation, Paneth cells also exhibit cell granule abnormalities comparable to 

humans with the ATG16L1 gene variant. These hypomorphic ATG16L1 mice also 

demonstrated an increased susceptibility to dextran sulfate sodium-(DSS) induced colitis, 

though they did not develop colitis spontaneously (81).  

The immune system plays a critical role in maintaining homeostasis with resident 

microbial communities. Likewise, resident bacteria profoundly influence mammalian 

immunity, ensuring that the reciprocal host-microbial relationship is maintained. (82). The 

gut microbiota is controlled by epithelial and immune cells via mucus, defensins and 

immunoglobin-A (IgA), for example. Equally, intestinal immunity is regulated by the 

microbiota, as certain microbes, such as segmentous filamentous bacteria, Clostridia and 

Bacteroides fragilis, have been shown to favor growth of different lymphocyte subsets 

promoting the induction of regulatory T-cells and T-helper cells (82). Both UC and CD are 

characterized by dysbiosis. In an analysis comparing the fecal microbiota profiles between 

UC and CD, the fecal microbial communities of IBD patients were different from those of 

healthy individuals (83). Intestinal samples from individuals with IBD demonstrate an 

increase in abundance of Bacteroidetes and Proteobacteria and a decrease in abundance of 

Firmicutes, as well as a decrease in microbial diversity (84-86). An important question is 

whether IBD-associated disturbance in gut microbial communities is a primary or secondary 

phenomenon (87). Evidence supports the hypothesis that the microbiota is influenced by the 

host’s genotype, which would be a primary factor in IBD pathogenesis (88). On the contrary, 

there is surmounting clinical and experimental data that suggests that infections, antibiotics, 

drugs and diet, among other environmental factors, can induce dysbiosis (89).  
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For individuals with acute IBD, the treatment goal is to improve quality of life and 

induce clinical remission of symptoms including colonic inflammation, rectal bleeding, 

diarrhea and abdominal pain (90). Once achieved, the goal is to maintain remission. 

Pharmacological intervention is the primary therapy for maintenance of IBD remission. The 

choice of pharmacological agents depends heavily on disease severity and location in the GI 

tract. Anti-inflammatory drugs are prescribed first and may include corticosteroids and 

aminosalicylates. The second line of treatment involves immune system suppressors (90). 

The most common class prescribed for UC and CD are TNF-a inhibitors, Infliximab and 

adalimumab. Both drugs are monoclonal anti-TNF-a antibodies that bind TNF-a and inhibit 

its pro-inflammatory effects in the intestine (90, 91).  Evidence also supports the use of 

antibiotics as an effective adjuvant therapy in IBD. Prescriptions for antibiotics have been 

used to manage IBD-induced dysbiosis, as well as to reduce incidence of infections (92). 

Related, because of the role that intestinal microbiota is thought to play in IBD pathogenesis, 

fecal microbiota transplant (FMT) has been used for the management of IBD with some 

positive outcomes reported. In a systematic review summarizing 17 studies, 76% of IBD 

patients reported cessation of medications and reduction in symptom severity, while 63% 

reported disease remission (93). Larger randomized control studies are necessary, however, 

to evaluate the efficacy of FMT in the management and treatment of IBD (92). Dietary 

recommendations for individuals with IBD are personalized. Individuals are instructed to use 

a diary to monitor their food intake and symptoms. This approach allows the patient to 

identify specific triggers and empower them to make modifications as needed. Further 

controlled studies are necessary to create evidence-based dietary guidelines for patients with 

UC or CD (94). 
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Vitamin D  

Biosynthesis and Metabolism  

‘Vitamin D’ refers to the parental vitamin D acquired by either one of two sources, 

the first, endogenously by the action of sunlight exposure on the skin. Specifically, ultraviolet 

B (UVB) photons penetrate the epidermis and photolyze 7-dehydrocholesterol to previtamin 

D3, which then isomerizes to vitamin D3, is absorbed in the capillary bed and enters into the 

circulation (95, 96). Alternatively, vitamin D is also obtained in the diet as either vitamin D3, 

provided by foods of animal origin, or vitamin D2, commonly found in plants. Because 

vitamin D is fat soluble, it is incorporated into micelles along with other dietary fat, which 

then passively diffuses into the intestinal epithelium. In the enterocyte, vitamin D is 

incorporated into chylomicrons, which first enters the lymphatic system and finally the 

circulation (97).  

Circulating vitamin D is transported to the liver via vitamin D binding protein (DBP). 

In the liver, 25-hydroxylase (CYP2R1) functions to hydroxylate vitamin D3 to 25-

hydroxyvitamin D3 (25D). 25D is secreted into the circulation, binds to DBP and is then 

transported to the kidney, the primary tissue site for synthesis of the biologically active 

hormonal form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D) (98, 99). DBP is a ligand of 

cubilin and megalin, two membrane-associated proteins, in the renal proximal tubule, that 

function together with the intracellular adaptor protein, disabled-2 (Dab2), to facilitate 

endocytic uptake of 25D. Thus, these receptors are the major means by which 25D is targeted 

to the kidney (99). Upon internalization into the proximal tubule, 25D can then either be 

converted to 1,25D by 25-hydroxyvitamin D α-hydroxlase (CYP27B1) or reabsorbed into 

circulation (Figure 1). 
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Figure 1. Vitamin D metabolism (100). 

 

Catabolism of vitamin D begins with the 24-hydroxylation of either 25D or 1,25D to 

produce the inactive metabolites 24,25-dihydroxyvitamin D3 and 1α,24,25-dihydroxyvitamin 

D3, respectively, for excretion. These reactions are catalyzed by 25-hydroxyvitamin D-24-

hydroxylase (CYP24A1), an enzyme primarily expressed in the kidney but also distributed in 

other tissues including the intestine and bone. CYP24A1 is also transcriptionally regulated by 

1,25D. Essentially, increasing concentrations of 1,25D stimulate its own catabolism (101, 

102). 
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Molecular Action 

Circulating concentrations of 25D are reflective of an individual’s vitamin D status. 

Concentrations vary depending on dietary intake and sunlight exposure (103, 104). Synthesis 

of 1,25D, on the contrary, is a tightly regulated process. The classical, hormonal actions of 

1,25D related to mineral metabolism and skeletal health are well-established (Figure 1). 

Concentrations of 1,25D are influenced by parathyroid hormone (PTH), circulating calcium 

and phosphorous concentrations as well as fibroblast growth factor 23 (FGF-23) (97). 

Expression of CYP27B1, responsible for catalyzing 25D to 1,25D, is stimulated by PTH, 

whose primary function is to respond to a reduction in plasma calcium concentrations and act 

upon bone to stimulate calcium release, enhance active reabsorption of calcium from the 

kidney, and stimulate production of 1,25D, which in turn will increase absorption of calcium 

by the intestine (101). As plasma concentrations of 1,25D increase, a negative feedback loop 

suppresses CYP27B1 expression. FGF-23 concentrations increase, suppressing CYP27B1 

and inducing CYP24A1, ultimately reducing vitamin D activation and subsequently 

decreasing calcium absorption (97, 101, 105, 106).  

The biological responses to the 1,25D hormone are mediated by VDR, a DNA-

binding transcription factor that activates a signal transduction complex, which includes the 

1,25D-liganded VDR and retinoid X receptor (RXR). After 1,25D and VDR bind, the 

complex translocates from the cytosol to the nucleus where it forms a heterodimer with RXR. 

Together, the VDR-RXR complex binds to vitamin D responsive elements (VDREs) located 

in specific sequences near promoters and recruits coregulatory complexes to regulate 

transcription (97, 107, 108). The two primary functional units of VDR are the N-terminal 

zinc finger DNA-binding domain and the C-terminal ligand-binding domain. The presence of 

the 1,25D-RXR ligand results in a dramatic conformational change at the C-terminus of 
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VDR. Upon heterodimerization, TATA binding protein associated factors and D-receptor 

interacting proteins (DRIP) are recruited to the transcription site. Coupled together with RNA 

polymerase II, in addition to other co-activators, transcription is initiated (107). Furthermore, 

the conformational change induced by the 1,25D-RXR-VDR ligand has the added effect of 

converting VDR into a more efficient substrate for one or multiple serine protein kinases, 

potentiating transcriptional activity of the VDR-RXR heterodimer, said to be enhanced by 

interactions with, DRIP25, a coactivator (109, 110). VDR is also responsible for the down-

regulation of transcription in a variety of genes. This down-regulation is accomplished when 

the VDR-RXR complex docks on a negative VDRE, binds a corepressor, and induces histone 

deacetylation and demethylation which alters the architecture of chromatin near the target 

gene (111). Additionally, it has also been demonstrated that VDR, when associated with the 

plasma membrane, has the potential to facilitate non-genomic actions by activating a variety 

of signal transduction pathways that can include kinases, phosphatases or ion channels (107, 

111).  

With respect to VDRE, the sequence of VDRE has been shown to strongly influence 

the level of protein binding (108). In other words, different sequences of VDRE promote 

distinctive conformations in the VDR-RXR complex, ultimately promoting heterodimer 

associations with specific comodulators and permitting differential actions in a variety of 

tissues. While majority of VDREs occur as one copy in the proximal promotor of vitamin D-

regulated genes, it is now known that VDREs can exist in at least two regions of the gene 

(112-119). Genes that possess multiple VDREs require VDR-RXR docking sites for maximal 

induction by 1,25D and these individual VDREs have been shown to function together in 

recruiting coactivators for transactivation (107, 120-122). 1,25D-mediated gene expression 
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has been well-established in traditional vitamin D target tissues including kidney, bone, 

intestine, parathyroid, skin and the hematopoietic system. Importantly, identification of 

VDRE-containing genes comprises an even wider variety of biological networks including, 

metabolism, immune function and cell proliferation, differentiation, migration and death, 

demonstrating that vitamin D is involved in several of the most fundamental processes in life 

(107).  

 

Status 

Among the research and medical communities, it is agreed upon that the gold 

standard measurement of vitamin D status for an individual is serum 25D concentrations. A 

key area of debate among scientists and medical personnel relates to definitions of vitamin D 

status: deficiency, insufficiency, sufficiency and toxicity (123). In 2011, after extensive 

review of the literature, the Institute of Medicine (IOM) concluded that for maximum bone 

health, concentrations of 25D at 20 ng/mL and above was adequate (Table 1) (124); however, 

this recommendation was met with great criticism from the Endocrine Society. Their expert 

panel concluded that to guarantee bone health, blood concentrations of 25D of at least 30 

ng/mL is required for the adult population (Table 1) (125). It is important to consider that the 

IOM guidelines are based upon the general population, while the Endocrine Society has 

taken into consideration individuals at risk for vitamin D deficiency (123, 126). Regardless, 

the existing controversy continues to generate confusion for clinicians, scientists, and the 

public. A number of factors contribute to vitamin D status including exposure to sunlight, 

skin pigmentation, and dietary intake (124). The Recommended Daily Allowance (RDA) for 

vitamin D is 600 IU/d with 4000 IU/d set as the Upper Tolerable Limit. 
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Table 1. Vitamin D status based on 25D concentrations 

Vitamin D Status 
Institutes of Medicine Endocrine Society 

ng/mL nmol/L ng/mL nmol/L 
Deficient < 12 <30 <20 <50 
Insufficient 12-20 30-50 21-29 53-73 
Sufficient >20 >50 30-100 75 
Toxic  >50 >125 ¾ ¾ 

 

These values were established by the IOM to meet the skeletal health needs of healthy 

populations because poor vitamin D status can lead to rickets, osteomalacia and decreased 

bone mineral density. To achieve a serum 25D concentration of 20 ng/mL (50 nmol/L), 600 

IU/d is said to be sufficient; however, whether it is an adequate amount to provide all the 

potential non-skeletal health benefits associated with vitamin D is debated (124). Evidence 

suggests that poor vitamin D status increases the risk for chronic diseases including obesity 

(127, 128), type 1 (129-131) or 2 (132-134) diabetes, chronic kidney disease (135, 136) and 

gastrointestinal disorders (137, 138). An intake of 2000-5000 IUs/ d, 5 times the RDA, has 

been recommended to achieve the IOM’s optimal concentration of 20 ng/mL to support 

overall health (139-141). Several studies have evaluated the efficacy of high dose vitamin D 

on health outcomes. In one study designed to evaluate the effect of vitamin D3 

supplementation in patients with bone metastases from breast cancer, the investigators 

concluded that 10,000 IU/d was a safe dose, though no significant changes in bone resorption 

was identified (142). Another study assessing 10,000 IU daily for 4 weeks in subjects with 

vitamin D deficiency and impaired fasting glucose, also found the dose to be harmless and 

not associated with undesirable side effects (143). Furthermore, a study in obese children 

demonstrated that a weekly dose of 25,000 IU vitamin D3 was well-tolerated and effective at 

improving the vitamin D status of participants who, at baseline, had insufficient and deficient 
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circulating concentrations (144). To that end, there remains a need for large-scale 

randomized clinical trials (RCT) designed to define the role of vitamin D supplementation in 

outcomes related to extraskeletal health (145). One such RCT is nearing completion in June 

2018. The Vitamin D and Omega-3 Trial (VITAL) is a 2 × 2 factorial, double-blind, 

randomized, placebo-controlled trial investigating the benefits and risks of daily 

supplementation for 5 years with 2000 IU/d vitamin D3 and marine omega-3 fatty acids 

(OmacorÒ fish oil, 1 g/d) in the primary prevention of cancer and CVD in 25,871 U.S. men 

and women over the age of 55 (146). To date, VITAL is the largest randomized trial of 

vitamin D in the country and, globally, is the only large trial with racial and ethnic diversity, 

and thus has the potential to impact future changes to the dietary reference intakes for 

vitamin D (146).  

While vitamin D toxicity is difficult to achieve from a combination of routine 

endogenous and exogenous sources, incidences of toxicity have been reported but are most 

often under accidental circumstances, e.g., prolonged, excess supplementation (124). The 

hallmark of vitamin D intoxication is hypercalcemia due to increased bone resorption and a 

subsequent rise in circulating calcium concentrations. Hypercalcemia can be life threatening 

if left untreated, leading to the deposition of calcium salts in soft tissues and organ 

dysfunction (124). There is a subset of the population that is at risk for vitamin D toxicity at 

normal serum 25D concentrations. Those with diseases that compromise the negative 

feedback on CYP27B1 in the kidney are more sensitive to developing toxicity. Individuals 

with chronic inflammatory diseases including tuberculosis, and sarcoidosis are also more 

susceptible to hypervitaminosis D because overproduction of extra-renal 1,25D by immune 

cells of the alveoli escapes normal feedback control by PTH causing hypercalcemia (147). 
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Additionally, mutations to CYP24A1, the enzyme responsible for the catabolism of 1,25D, 

results in increased circulating 1,25D. Individuals typically present to the hospital with 

symptoms of hypercalcemia, hypercalciuria and/or nephrolithiasis before a mutation is 

identified (148).   

Vitamin D deficiency has been reported to affect an estimated 30% of the U.S. 

population (149). Pregnant and lactating women, the elderly, those with increased skin 

melanin pigmentation, and children and adults with insufficient sun exposure are at 

especially high risk for developing vitamin D deficiency (125, 150-152). In infants and 

children, severe vitamin D deficiency manifests into rickets, which is characterized by a 

failure of the cartilage to mature and mineralize into bone. The effects are evident at the 

wrists, ankles and knees, all of which become enlarged. Furthermore, as weight-bearing 

activity begins, the long bones of the legs begin to bow, and knees knock. In adults, 

depravation of vitamin D leads to osteomalacia, which is characterized by defects in bone 

mineralization caused by alterations in calcium and phosphorous absorption and excretion 

(153). Specifically, 1,25D-mediated calcium absorption decreases. The decline in serum 

calcium concentrations trigger increased secretion of PTH. PTH promotes bone resorption 

and increased urinary excretion of phosphorous. Without adequate concentrations of serum 

calcium and phosphorous, the mineralization of bones under the direction of calcitonin 

cannot occur. Calcitonin is produced in the thyroid gland, is stimulated by increased calcium 

concentrations and facilitates the deposition of calcium and phosphorous in bone (154). 

 

Vitamin D and Chronic Diseases  

With the discovery of VDR and the presence of 1,25D activity in a number of tissues, 

accumulating evidence from observational data and small clinical trials have demonstrated an 
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association between vitamin D deficiency and a variety of chronic diseases (150).  In studies 

of cancer cells and in tumors of animal models, vitamin D was found to be involved in a 

variety of physiologic processes that may slow or prevent malignancy, including promoting 

cellular differentiation, decreasing cancer cell growth, inducing apoptosis and reducing 

angiogenesis (155-158). A variety of molecular effects of vitamin D and the cardiovascular 

system have also been described (159). For example, mice with a systemic knockout of either 

VDR or CYP27B1 exhibit myocardial hypertrophy with overexpression of the renin-

angiotensin-aldosterone system, hypertension, and advanced atherosclerosis (160). Vitamin 

D may also possess antihypertensive properties by suppressing the renin-angiotensin-

aldosterone system (161, 162). Studies also suggest that vitamin D can protect against 

atherosclerosis and may even promote endothelial repair in vascular smooth muscle cells 

(163-165). Finally, because vitamin D is involved in immune modulation, a number of 

studies highlight the potential role for vitamin D in the pathogenesis of autoimmune diseases 

including multiple sclerosis, rheumatoid arthritis, T1D and Crohn’s disease (100, 166-169). 

The effect of vitamin D on the innate immune system is said to be primarily through toll-like 

receptors, while its effect on the adaptive immune system is through T-cell differentiation, 

specifically type 17 T helper cell which is overactivated in autoimmune diseases and leads to 

inappropriate production of pro-inflammatory cytokines (170, 171). To date, however, the 

available data are not comprehensive enough to establish vitamin D recommendations for the 

prevention or treatment of chronic diseases. To fully understand the effects of vitamin D on 

chronic disease outcomes, rigorous, large-scale randomized clinical trials are necessary 

(150). 
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Diabetes 

The potential therapeutic effects of supplemental vitamin D in the prevention or 

treatment of diabetes remains the subject of debate. Epidemiological and association studies 

suggest a correlation between vitamin D deficiency and an increased prevalence of T1D and 

T2D (172). Data from cross-sectional studies indicate that lower serum 25D status is 

associated with impaired insulin sensitivity in T2D (127, 173-176). Furthermore, it has also 

been demonstrated that overweight and obese individuals are more susceptible to vitamin D 

insufficiency or deficiency, which enhances their risk for T2D due to the role vitamin D may 

play in the maintenance of glucose homeostasis (177-180). In a study that investigated 

whether low circulating 25D concentrations are associated with impaired insulin function in 

individuals with prediabetes, it was determined that those with a combination of prediabetes 

and hypovitaminosis D were more insulin resistant and exhibited impaired β-cell function, 

compared to the group with normal fasting blood glucose, suggesting that vitamin D may 

play a role in regulating insulin and glucose homeostasis (173).  

A number of observational studies have reported an improvement in vitamin D status, 

greater insulin sensitivity, and decreased fasting blood glucose following intervention with a 

vitamin D supplement (181-183). Specifically, Yousefi and colleagues reported a significant 

decrease in HbA1c in T2D patients who received 4000 IU vitamin D3 for 5 months 

compared to diabetic patients who received a placebo (181). Similarly, another study 

assessing the intervention of weekly 50,000 IU vitamin D3, for 8 weeks, in T2D participants, 

showed significant improvements in fasting blood glucose, insulin and in HOMA-IR. A 

recent systematic review and meta-analysis of RCTs, found that short-term vitamin D 

supplementation had a positive effect on fasting blood glucose in T2D patients specifically 

with poorly controlled diabetes (183). These trends have also been reported in cases of T1D 
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(184, 185). A prospective study evaluated the effect of 4000 IUs vitamin D3, daily for 12 

weeks in T1D participants who also had vitamin D deficiency. Patients that achieved lower 

HbA1c also had higher serum 25D concentrations compared to T1D participants whose 

vitamin D status did not improve (186).   

The genomic action of 1,25D and the presence of VDR in the pancreatic b-cell and 

their role in insulin secretion may provide a mechanistic link to the pathogenesis of diabetes 

(187, 188). In a study of VDR-mutant mice, impaired insulin secretory capacity was 

exhibited, and mRNA expression of insulin was lower compared to wild-type mice (189). 

Similarly, another study demonstrated that vitamin D deficient rats exhibited improved 

insulin secretion upon repletion with 1,25D (190). Furthermore, in a model of T1D, treatment 

of 1,25D prevented the onset of diabetes in non-obese diabetic (NOD) mice by suppressing 

islet expression of pro-inflammatory cytokines and a reduction in insulitis; however, late 

intervention treatment of 1,25D was unsuccessful in preventing diabetes incidence in NOD 

mice (191), demonstrating that the beneficial effects of 1,25D are restricted in the presence of 

immune cell infiltration. Action of 1,25D on glucose homeostasis in peripheral tissues was 

exemplified in a study with glucose-treated 3T3L1 adipocytes. Treatment of 1,25D 

upregulated GLUT4 expression and its translocation to the cell surface, leading to an increase 

in glucose uptake (192).  

Despite the many described benefits of vitamin D in the prevention and management 

of diabetes, several studies argue the contrary (193-196). A recently published double-blind, 

randomized, placebo-controlled study determined that intervention with 4000 IU vitamin D3 

per day for 11 months did not improve HbA1c or insulin secretion rate, measured by C-

peptide concentration, in T2D participants with well-controlled disease (196). Similarly, 
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intervention with weekly 30,000 IU (193) and 28,000 IU (194) reported no effect on b-cell 

function, glucose homeostasis or insulin sensitivity in participants with prediabetes and diet-

controlled T2D. In another study, daily intake of 0.25 µg 1,25D for 9 months, while 

determined safe, did not improve β-cell function in participants with newly diagnosed T1D 

(195). Overall, the results of current randomized clinical trials on the effect of vitamin D in 

patients with impaired glucose tolerance or type 2 diabetes are inconsistent (183, 197, 198). 

In the future, large-scale trials with a long-term intervention period will be critical to 

understanding the glycemic effects of vitamin D treatment in the prevention and management 

of T1D and T2D.  

 

IBD 

Vitamin D deficiency has long been recognized as an environmental risk factor for 

CD. This finding was initially correlated with the incidence of bone disease in individuals 

with CD (67). As reviewed by Del Pinto et al. (137), emerging data suggest that low serum 

25D status has a significant role in disease activity in IBD. Moreover, diarrhea, 

malabsorption, and GI bleed are common features of IBD; thus, nutritional deficiencies are 

common in individuals with UC and CD (199). While the role of vitamin D signaling in the 

gut has not been fully elucidated, plausible mechanisms related to immunological action have 

been demonstrated. In a healthy individual, sufficient circulating 25D concentrations assist 

gut epithelial barrier integrity. When the barrier is penetrated by luminal microbiota, 

activation of toll like receptors (TLRs) on antigen presenting cells (APCs) induces intracrine 

vitamin D signaling in APCs to contain the microbes (200, 201). Additionally, target genes 

for 1,25D include proteins involved in the formation of tight junctions such as occludins and 
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claudins, as well as proteins involved in autophagy and the expression of antimicrobial 

peptides (AMPs), which together preserve intestinal immune homeostasis (200). Therefore, 

under vitamin D deficient conditions, when flux through CYP27B1 is diminished, APCs are 

not able to respond as efficiently to bacterial insult. Consequently, there may be a reduction 

in tight junction formation, causing an increase in bacterial ligands to TLRs and NOD2, 

ultimately leading to initiation of the host immune response (200). In a study comparing 

VDR knockout mice with wildtype mice, researchers identified higher expression of proteins 

involved in cell proliferation and migration and stress response in VDR knockout mice, 

implicating a role for vitamin D in maintenance of these functions (202). Similarly, Wu et al. 

(203) determined that ATG16L1, an autophagy gene, was downregulated in VDR knockout 

mice, and these mice were also more susceptible to DSS-induced colitis compared to 

wildtype mice. Moreover, VDR/IL-10 double knockout mice develop severe IBD involving 

the entire small intestine and colon and exhibit significant changes in colonic tissue and 

inflammation compared to single VDR and IL-10 knockout mice, which may indicate that 

VDR expression is required to manage intestinal inflammation (204). 

In humans with IBD, hypovitaminosis D is associated with lower quality of life, 

higher disease activity scores and increased morbidity (205, 206). In a small, randomized, 

double-blind placebo-controlled trial, Jørgensen and colleagues (207) determined that daily 

1200 IU vitamin D3 for 12 months increased serum 25D concentrations and was associated 

with a reduced rate of relapse in participants with CD. In another study carried out among 

patients with IBD, weekly 50,000 IU vitamin D3 for 3 months resulted in increased 

circulating 25D and diminished serum TNF-α concentration, which suggests an improvement 

in the immune response (208). Of note, the difference in TNF-α concentration from baseline 
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to post intervention was reported to be statistically insignificant (P = 0.07) (208). The 

investigators propose a longer intervention period to yield a more robust immune response to 

supplemental vitamin D3. To date, however, there remains no standardized protocol for 

supplemental vitamin D recommendations to manage immunomodulatory-mediated 

extraskeletal complications of IBD (209). With respect to risk of disease, results from women 

enrolled in the Nurses’ Health Study demonstrated that higher serum 25D concentrations 

significantly reduced the risk for incident CD but not UC (210). The relationship between 

sun exposure and risk of developing CD or UC has been investigated with respect to 

geographical location and seasonal variation. Studies indicate that lower UVB exposure is 

associated with a higher risk of CD, but not UC (211-213).  

Though much advancement has been made in understanding the mechanism of 

vitamin D action and its effect on mucosal and systemic immune system, including intestinal 

inflammation, further studies are needed to identify the optimal concentration of circulating 

25D for immunomodulatory effects in IBD and establish supplement recommendations for 

therapeutic management (209).  

 

Dietary Sources 

As described previously, vitamin D needs are met by most individuals through 

exposure to sunlight. Alternatively, vitamin D is acquired through the diet. The abundance of 

a vitamin D-rich foods in the market is insufficient because vitamin D occurs naturally in 

very few foods. Table 2 (214) contains a list of foods, their content of vitamin D and the 

percent daily value for reference. Among the best sources are fatty fish and supplemental fish 

liver oils, which include tuna salmon and mackerel (215). Vitamin D3 and 25D are also 

found in small amounts in beef liver, egg yolks and some cheeses. Lastly, certain mushrooms 
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contain variable amounts of vitamin D2, depending on their UVB exposure (215). In 

America, as well as other countries (216-218), the majority of vitamin D in foods is provided 

by fortification (219). The milk fortification program was implemented in the U.S. to combat 

rickets, which was a major health concern among children in the 1930’s (124). Today, nearly 

all of the country’s milk supply is fortified with 100 IU per 8 fl oz., though this program has 

not led to fortification of other dairy products (124). Specific brands of orange juice, 

margarine, yogurt and ready-to-eat breakfast cereals are other foods that contain added 

vitamin D. Additionally, there is a mandate in the U.S. to fortify infant formula with 

approximately 40-100 IU per 100 kcal (124).  

Animal-based foods, including beef, poultry and eggs, are known to contain varying 

amounts of 25D, the metabolized form of vitamin D that represents an individual’s status 

(214). In the U.S., the amount of 25D in foods has not been analyzed and thus, is not 

included when reporting the total vitamin D content of foods. Adding to the complexity is the 

fact that there is no standard reference for measuring 25D in food matrices (220, 221). 

Recent evidence suggests that 25D is approximately five times more potent than vitamin D3 

in raising circulating 25D concentrations (45, 221). For this reason, intake of vitamin D 

across the U.S. and the contribution of 25D to the vitamin D status of Americans may be 

underestimated (221). Advancements are underway to identify validated methodologies to 

determine amounts of vitamin D and 25D in foods and supplements. These endeavors have 

the potential to address the discrepancies between reported serum 25D concentrations and 

vitamin D intake and contribute to public health policy decisions regarding vitamin D 

requirements (222). 
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Table 2. Food Sources of Vitamin D* 

Food IUs per serving % Daily Value 
Cod liver oil, 1 tbsp 1360 340 
Swordfish, cooked, 3 oz 566 142 
Salmon (sockeye), cooked, 3 oz 447 112 
Tuna fish, canned in water, drained, 3 oz 154 39 
Orange juice fortified with vitamin D, 1C 137 34 
Milk, nonfat, reduced fat, and whole, vitamin D-fortified, 8 fl oz 120 30 
Yogurt, fortified with 20% of the DV for vitamin D, 6 oz  80 20 
Margarine, fortified, 1 tbsp 60 15 
Sardines, canned in oil, drained, 2 sardines 46 12 
Liver, beef, cooked, 3 oz 42 11 
Egg, 1 large 41 10 
Ready-to-eat cereal, fortified with 10% of the DV for vitamin D, 0.75-1C 40 10 
Cheese, Swiss, 1 oz 6 2 
*Adapted from the National Institutes of Health Office of Dietary Supplements (214) 
 
 
 

 

32 



www.manaraa.com

33 
 

 

 

Dietary Whole Eggs  

In the U.S., egg consumption per capita was estimated to be 275 in 2017, equating to 

less than 1 egg per day per person (223). There are no specific guidelines for daily or weekly 

egg consumption; however, studies show that 1 egg per day is not detrimental to health (224, 

225). As part of a healthy eating pattern, it is suggested to incorporate whole eggs into a 

balanced diet containing a variety of fresh produce, whole grains and lean meats (226). 

Fundamentally, eggs possess culinary versatility, low economic cost, and no religious-based 

restrictions, which make them an appealing food to a variety of populations around the world 

(227, 228).   

 

Egg Nutrition 

It is well established that eggs contain a variety of nutrients, particularly compared to 

other animal products (226). They have long been promoted for their high-quality protein, 

possessing an amino acid profile that is similar to beef but has greater bioavailability, as well 

as for their high nutrient density-to-energy ratio (226, 227, 229). The caloric content of 1 egg 

equates to 3.6% of total calories, relative to a 2000 calorie diet, while at the same time 

providing a number of other nutrients (Table 3) in excess including folate, riboflavin, 

choline, vitamin B12, vitamin A and vitamin D (230). 

Choline can be acquired via de novo biosynthesis, through methylation of 

phosphatidylethanolamine, which alone is not sufficient to meet the daily requirement and 

must be met via dietary intake (231). Eggs not only contain a high concentration of choline, 

but they are one of few dietary sources of choline. As a component of egg lecithin, choline 

possesses a number of important physiologic functions, including the synthesis of 
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phospholipids such as phosphatidylcholine, a predominant component of all biological 

membranes (227, 229, 231). Additionally, choline functions in methyl group metabolism, 

neurotransmitter synthesis, and lipid transport (227, 231).  

One underappreciated group of nutrients also found in eggs are carotenoids, the 

natural pigment of egg yolks giving it its yellow-orange color. Lutein and zeaxanthin are the 

primary carotenoids found in egg (227). These carotenoids accumulate in the macular region 

of the retina and have been implicated in the prevention of age-related macular degeneration 

(232). Because lutein and zeaxanthin are not synthesized endogenously, their circulating 

concentrations are dependent on dietary intake. Furthermore, the food matrix in which 

carotenoids are found may impact their bioavailability. In egg yolks, lutein and zeaxanthin 

are associated with the lipid matrix, making them highly bioavailable (227, 229, 232).  

Egg yolks are also a rich source of vitamin D owing to the efficient transfer of 

vitamin D, by the hen from the feed into the yolk (233). As described earlier, egg contains 

both vitamin D3 and 25D. It has been reported that eggs contain higher concentrations of 

25D compared to other animal-based foods, which is significant when considering the 

potency of 25D (221, 234). It is estimated that 1 egg (50 g) contains 0.325 µg, or 13 IU 25D 

(221). After applying a potency factor of 5, the value increases to 65 IU 25D, which meets 

11% of the RDA for vitamin D. Because eggs are naturally a good source of both vitamin D3 

and 25D, they are an ideal candidate for fortification. Browning et al. (234) demonstrated 

that supplementation of hen feed with varying amounts of vitamin D3 and 25D resulted in 

significant increases in the egg yolk concentrations of vitamin D3 and 25D, suggesting that 

egg consumption has the potential to contribute to the RDA requirement of vitamin D (234). 
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Table 3. Nutrient Composition of Eggs* 

Nutrient 1 large, cooked, 
poached (50 g) 

Vitamin and 
Mineral % RDA 

Energy (kcal) 72 ¾ 
Protein (g) 6.25 ¾ 
Total lipid (g) 4.74 ¾ 
Saturated fat (g) 1.556 ¾ 
Monounsaturated fat (g) 1.821 ¾ 
Polyunsaturated fat (g) 0.952 ¾ 
Cholesterol (mg) 185 ¾ 
Calcium (mg) 28 3 
Iron (mg) 0.88 men  11  

women  5  
Magnesium (mg) 6 2 
Phosphorus (mg) 98 17 
Sodium (mg) 148 ¾ 
Zinc (mg) 0.65 7 
Thiamin (mg) 0.016 1.3 
Riboflavin (mg) 0.194 16 
Niacin (mg) 0.032 0.2 
Vitamin B6 (mg) 0.072 6 
Folate, DFE** (µg) 18 5 
Choline (mg) 117 23 
Vitamin B12 (µg) 0.35 15 
Vitamin A, RAE** (µg) 80 10 
Vitamin D (IU) 41 7 
Vitamin K (µg) 0.1 0.1 
* USDA National Nutrient Database (230)  
**DFE = dietary folate equivalent, RAE= retinol activity equivalents 

  

Egg consumption and health 

Satiety 

The relationship between dietary protein and satiety is well defined, as dietary protein 

enhances satiety and reduce food intake beyond the necessary isocaloric needs of the 

individual (226). Importantly, there is evidence to suggest that the high protein content of 

eggs may contribute to post prandial satiety (235-238). A recent study in Sprague Dawley 
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rats compared the influence of protein level and source on satiety. The investigators 

determined that egg white protein provided at 35% of total calories, was superior to wheat 

gluten (35% protein) and a basal diet (20% protein) at increasing satiety (238). On the 

contrary, in a study carried out in healthy men, isocaloric, macronutrient-balanced, fiber-

matched meals based on vegetable protein or animal protein (including eggs) had similar 

effects on hunger, satiety, and fullness based on measurements using visual analogue scales 

(239). Because the test meals in this study contained a combination of whole foods, the 

results may be more reflective of normal human consumption. Additionally, a number of 

studies have investigated the effect of egg consumption on satiety with respect to specific 

meal time. Some research has shown that, when provided at breakfast, eggs enhance satiety 

(235, 237) and reduce short-term energy intake (235, 240), while others found no impact on 

appetite and food intake after egg intake at breakfast (241). Similarly, an egg omelet at lunch 

elicited a significantly stronger satiating effect in participants compared to a potato-based 

meal, though energy intake was similar between groups 4 hours post meal intervention (236).  

 

Allergy 

Egg allergy is the second most common food allergy, second to cow’s milk, affecting 

1-2% of infants and children worldwide (242). The four primary allergenic proteins are found 

in the egg white and consist of ovomucoid, ovalabumin, ovotransferrin and lysozyme. Egg 

yolk allergens have also been identified, though hypersensitivity to these proteins are less 

common. They include chicken serum albumin and YGB42 (242, 243). Allergy to egg is 

considered a type 1 hypersensitivity reaction owing to the rapid inflammatory response 

characterized by overproduction of immunoglobin E (IgE) and may manifest into itching, 

atopic dermatitis, bronchial asthma, vomiting, rhinitis, conjunctivitis, laryngeal edema, 
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chronic urticaria, or anaphylaxis (243). The relationship of egg consumption and an immune 

response is complex. There is no cure or treatment that provides long-term remission for egg 

allergy. Strict avoidance of eggs and egg-containing products is the most effective way to 

avoid an immune reaction (244). It is common, however, for children to outgrow an egg 

allergy. The reported rate of resolution in the US ranges from 12-68%, depending on the age 

of resolution (245).  Elucidating the mechanisms involved in egg allergy remains complex. 

Advancements in genetics, epigenetics, environmental factors and the gut microbiome show 

promise in understanding the triggers and subsequently the treatment of egg allergy (244).  

 

Cardiometabolic Disease 

The relationship between serum cholesterol and heart disease was first identified in 

the Framingham Heart Study, which hypothesized that dietary cholesterol, via circulating 

lipids, contributed to heart disease risk (246, 247). In the U.S., the estimated cholesterol 

intake averages 200-350 mg/ day. With approximately 200 mg of cholesterol in a single large 

egg (230), eggs make up a significant source of dietary cholesterol in the American diet (248, 

249). Initial observational studies established a link between dietary cholesterol and CVD 

risk; however, these early studies did not account for confounding variables including dietary 

and lifestyle habits (250, 251). As a result, egg consumption has been the focus of countless 

studies, and for decades limited egg consumption has been recommended to reduce CVD 

risk, particularly in people with T2D (252). Importantly, revisions to the Dietary Guidelines 

for Americans in 2015 no longer include recommendations to limit intake of dietary 

cholesterol, a decision based on the growing body of literature demonstrating a lack of 

association between cholesterol intake and adverse health risks in the general population 

(253). Consistent with this message, organizations around the world, including the American 
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Heart Association, The British Heart Foundation, The National Heart Foundation of 

Australia and the Danish Heart Association, are loosening restrictions on egg consumption 

(252). Despite this international benchmark, the debate on egg consumption and CVD risk 

continues. 

An important fact to consider are individual serum cholesterol responses and 

adaptations to cholesterol intake. The majority of cholesterol in the body is produced 

endogenously (30,31). Approximately 25% of serum cholesterol is derived from the diet. To 

provide perspective on those values, Blesso and Fernandez (254) state that the average 70 kg 

adult synthesizes an estimated 850 mg cholesterol/day. If that adult consumed 400 mg/d of 

dietary cholesterol, the amount found in 2 large eggs, and absorbed 60% (255), that amounts 

to 240 mg from the diet of 1090 mg total cholesterol in the body, or 22% from diet (254). To 

add to the complexity, cholesterol balance is affected by synthesis rates of cholesterol and 

bile acids, and excretion rate from the body. Studies on sterol balance in high cholesterol 

diets demonstrate feedback inhibition of cholesterol biosynthesis and increased excretion of 

bile acids (256). Sterol regulatory element-binding protein-2 (SREBP-2) tightly regulates 

cellular cholesterol biosynthesis. When cellular cholesterol is decreased, activity of SREBP-2 

increases to upregulate gene expression of proteins involved in cholesterol biosynthesis, such 

as 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase (257). Under conditions when 

cellular cholesterol biosynthesis is increased, both cholesterol biosynthesis and lipoprotein 

uptake are reduced via feedback inhibition. Here, SREBP-2 gene expression is reduced, and 

post-translational degradation of HMG-CoA reductase is enhanced (257). Feeding studies 

used to create predictive equations to estimate the response of dietary cholesterol intake on 

serum cholesterol estimate a 2.2-2.5 mg/dL change in serum cholesterol per 100 mg dietary 
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cholesterol (258). Thus, the majority of individuals respond marginally to dietary cholesterol 

due to feedback regulation of cholesterol stores. Importantly, additional genetic and 

metabolic factors are key players in this response. A number of clinical trials carried out in 

children (259), men (260), women (261) and older adults (262) have demonstrated variable 

responses to an additional 500-650 mg of egg-derived dietary cholesterol for a minimum of 4 

weeks. The terms for this variation are “hyper- and hypo-responders” (263). Those who do 

not respond or respond with a slight increase in serum cholesterol when consuming a large 

amount of dietary cholesterol are hypo-responders, representing two-thirds of the population. 

Hypo-responders have the ability to compensate for the increase in cholesterol intake by 

decreasing biosynthesis, absorption, and increasing excretion (263, 264). On the contrary, the 

other third of the population are hyper-responders, in that they respond with large increases 

in serum cholesterol to high dietary cholesterol intake. This fact likely accounts for the 

heterogeneity in results across studies and meta-analyses on the relationship between egg 

consumption and CVD risk (263, 264).  

A meta-analysis conducted by Shin et al. (265) determined that egg consumption was 

not associated with the risk of CVD or mortality in the general population (265). Similarly, in 

a cohort of healthy adults, Alexander et al. (266) found a 12% decrease in stroke risk and no 

association of coronary heart disease (CHD) with 1 egg per day compared to less than 2 eggs 

per week (266). A dose-response meta-analysis of prospective cohort studies also found no 

evidence of an association between egg consumption and risk of stroke or CHD (267). In 

another observational study, no association was found between egg consumption and risk of 

myocardial infarction and stroke; however, more than 1 egg per day was linked to an 

increased risk of heart failure in men (268). Choi and colleagues (269) examined the 
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association between egg intake and coronary artery calcium content in healthy South Korean 

subjects (269). In a multi-variable adjusted model, they identified a higher prevalence of 

coronary artery calcium in those who consumed greater than 7 eggs per week compared to 

subjects who consumed less than 1 egg per week. It was concluded that egg consumption is 

positively associated with atherosclerosis owing to the cholesterol content of the eggs. Of 

note, the subjects in which these associations were highest also presented with higher body 

mass index (BMI) and lower vegetable intake (269).  

Interestingly, in diabetics, the association between egg intake and CVD appears to be 

more consistent (224, 267, 270, 271), though not always observed (272-274). In a meta-

analysis, Li et al. reviewed 14 studies and identified a dose-dependent relationship between 

egg consumption and risk of CVD and T2D (275). The investigators determined that an 

increment of 4 eggs per week increased the relative risk for CVD by 1.06 (95% CI: 1.03–

1.10), and T2D by 1.29 (95% CI: 1.21–1.37) (275). In another meta-analysis, restricted to 

studies in the U.S., consumption of 3 or more eggs per week increased risk of T2D (276). In 

the meta-analysis by Shin et al. (265), 4 cohorts included subjects with T2D. Those with T2D 

who consumed more than 1 egg per day were 1.69 times as likely to develop CVD than 

diabetics who never consumed eggs or ate less than once per week (265). Controlled studies, 

carried out in participants at high risk of T2D or with established T2D, demonstrate favorable 

effects or no adverse effects of high egg consumption on cardiometabolic risk factors or 

glycemic control (277-283). Pearce et al. demonstrated that a high-protein low-calorie diet, 

high in cholesterol derived from eggs, improved glycemic control, circulating lipids and 

blood pressure in participants with T2D. Similarly, the DIABEGG trial (282) investigated 

whether a high-egg diet (2 eggs/day for 6 days per week) compared to a low-egg diet (<2 
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eggs per week) affected circulating lipid profiles in prediabetics and subjects with T2D who 

were also overweight or obese, as part of a weight maintenance study. There were no adverse 

effects on the lipid profile of T2D subjects, suggesting eggs may be included as part of a 

balanced diet in T2D (282). In a recent follow-up study, the investigators assessed the effects 

of a high-egg versus low-egg diet as part of a 3-month weight-loss period and 6-month 

follow-up period in participants with prediabetes and T2D and an average BMI of 33.5 kg/m2 

(284). Results corresponded to their previous study. Those with prediabetes or T2D who 

consumed the high-egg weight loss diet exhibited no adverse changes in cardiometabolic 

markers compared to the low-egg diet group. This finding supports the incorporation of egg 

intake as part of healthy diet recommendations to induce weight loss in T2D (284). 

Some studies have demonstrated poor cholesterol absorption in obese and insulin-

resistant individuals compared to those who are lean (285-287). Thus, the hypothesis that the 

phosphatidylcholine content of eggs, as oppose to the cholesterol, may contribute to the 

increased susceptibility of cardiometabolic disease in high egg consumers, aligns with the 

observational studies that demonstrate a consistent link between egg consumption and CVD 

(288). Phosphatidylcholine is metabolized by intestinal bacteria, producing trimethylamine 

N-oxide (TMAO), which has been shown to promote atherosclerosis in a hyperlipidemic 

mouse model (289) and associated with increased adverse cardiovascular events in humans 

(290). However, in healthy young adults, 2-3 eggs per day was not associated with increased 

circulating concentrations of TMAO (237, 291). Moreover, postprandial plasma TMAO 

concentrations were significantly lower in healthy men following egg consumption compared 

to fish intake, a direct source of dietary TMAO (292). Overall, the dietary phospholipid 
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contribution to TMAO concentrations and subsequent CVD risk is multifaceted and requires 

further studies (293, 294).  
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CHAPTER 3.    WHOLE EGG CONSUMPTION PREVENTS DIMINISHED SERUM 
25-HYDROXYCHOLECALCIFEROL CONCENTRATIONS IN TYPE 2 DIABETIC 

RATS 

Reprinted with permission from Jones, S. K.; Koh, G. Y.; Rowling, M. J.; Schalinske, 

K. L., Whole Egg Consumption Prevents Diminished Serum 25-Hydroxycholecalciferol 

Concentrations in Type 2 Diabetic Rats. J Agric Food Chem 2016, 64 (1), 120-4. Copyright 

2016. American Chemical Society. 

Abstract 

Type 2 diabetes (T2D) is characterized by vitamin D deficiency owing to increased urinary 

loss of 25-hydroxycholecalciferol (25D). Whole eggs are a rich source of vitamin D, 

particularly 25D, the circulating form that reflects status. Zucker diabetic (type 2) fatty (ZDF) 

rats and their lean counterparts were fed casein- or whole egg-based diets for 8 weeks. Whole 

egg consumption attenuated both hyperglycemia and hypertriglyceridemia, as well as reduced 

weight gain in ZDF rats compared to casein-fed diabetic rats.  Circulating 25D was lower in 

casein-fed ZDF rats compared to lean controls; however, ZDF rats fed whole egg exhibited the 

same circulating 25D concentration as casein-fed lean rats. These data suggest that dietary 

whole egg can attenuate metabolic anomalies, as well as maintain normal circulating 25D 

concentrations in T2D rats. This finding may support new dietary recommendations targeting 

vitamin D deficiency prevention in T2D. 

 

Introduction 

Millions of individuals in the US population suffer from type 2 diabetes (T2D) and in 

combination with obesity, represents an epidemic disease that is continuously on the rise (1).  

Current recommendations focus on two aspects of T2D and obesity, controlling diet and 
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increasing physical activity.  Dietary recommendations focus primarily on caloric intake and 

the consumption of specific forms of carbohydrate as a means to control blood glucose 

concentrations and reduce body weight.  Inadequately controlled or uncontrolled T2D has 

adverse health implications with respect to numerous complications, including diabetic 

nephropathy and cardiovascular disease (2, 3).  There are a number of emerging fields relevant 

to T2D and its associated complications. In particular, it is now recognized that T2D is 

characterized by micronutrient imbalances, including vitamin D (4). 

Cholecalciferol (vitamin D3) can be produced endogenously in the skin via UVB 

irradiation-induced conversion of 7-dehydrocholesterol or obtained in the diet from naturally 

occurring or fortified foods. In the liver, 25-hydroxylase functions to hydroxylate 

cholecalciferol to form 25D. Other organs expressing 25-hydroxylase include the lungs, 

intestine and kidneys. Once generated, circulating 25D reflects an individual’s vitamin D 

status, measured by serum or plasma 25D concentrations. Currently, optimal levels have been 

poorly defined, and recommendations are controversial. It has been proposed that as many as 

70% of Americans may be insufficient with respect to vitamin D status, based on serum 25D 

concentrations (5).  

Following hydroxylation in the liver, 25D bound to vitamin D binding protein (DBP) 

is released into the blood stream and taken up primarily by the kidney. In the proximal tubule, 

25D-DBP is endocytosed from the renal filtrate via the proteins megalin and cubilin. Taken 

together with disabled-2 (Dab2), an intracellular adaptor protein, 25D-DBP may either be 

returned to the circulation or undergo hydroxylation by 25D-1-α-hydroxylase, resulting in the 

production of 1,25-dihydroxycholecalciferol (1,25D), commonly referred to as calcitriol and 

considered the most active form of vitamin D. Therefore, optimal concentrations of 25D and 
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1,25D are dependent on renal function. This is a significant concern for individuals with 

diabetic nephrophathy, as the ability to maintain adequate circulating concentrations of 25D 

and 1,25D may be compromised. Furthermore, with a propensity for compromised vitamin D 

status, diabetics are at increased risk for developing vitamin D deficient-related illnesses, 

including bone disease, autoimmune disorders, and a variety of cancers (6). 

Whole eggs are an excellent source of vitamin D, specifically in the yolk (7). Thus, 

their incorporation into the diet represents a viable means to maintain vitamin D balance as a 

function of T2D despite the urinary loss of 25D and DBP. In this present proof-of-principle 

study, our objective was to understand the relation between egg consumption and T2D, 

particularly with respect to vitamin D balance and diabetic complications. Moreover, the 

primary source of vitamin D found in eggs is 25D (8). The literature remains inconsistent 

regarding the relation between egg consumption, glycemic control, and the onset and/or 

progression of T2D.  There are limited mechanistic studies that have examined the relation 

between egg consumption, T2D progression, and its related adverse characteristics (9). Using 

a rodent model is essential to ascertain a level of comprehensive understanding that is required 

to develop a translational approach for humans.  Furthermore, the majority of pharmacological 

therapeutic protocols for treatment of T2D are not completely sufficient; thus, dietary 

recommendations are of high importance as an alternative approach. 

 

Materials and Methods 

Chemicals. ELISA kits were purchased from the following companies: creatinine, Cayman 

Chemical; triglyceride, BioAssay Systems; 25-hydroxyvitamin D, Immunodiagnostic 

Systems. All other chemicals were analytical grade.  
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Animals and diets. All animal studies and diets were approved by the Institutional Animal 

Care and Use Committee at Iowa State University and were performed according to the Iowa 

State University Laboratory Animal Resources Guidelines. Ten 8-week old male Zucker 

diabetic fatty (ZDF; fa/fa) rats and 10 male lean control ZDF (+/?) rats were purchased from 

Charles River Laboratories. Rats were housed in individual plastic cages in a temperature-

controlled room with a 12-h light-dark cycle. All diet ingredients, with the exception of dried 

whole egg (Rose Acre Farms, Guthrie Center, IA), were purchased from Harlan Teklad 

(Madison, WI), as well as L-methionine and choline bitartrate (Sigma Aldrich, Milwaukee, 

WI). All rats were acclimated to a standard semi-purified diet (AIN93G) for 3 days. Rats were 

randomly assigned to one of two diet groups: a control casein-based diet, or the same diet 

containing whole egg in place of casein. Both diets provided dietary protein at 20% (w/w). 

Additional corn oil was added to the casein-based diet to achieve the same total lipid content 

as the whole egg-based diet. The vitamin mix (TD.94047) contributed 25 µg of vitamin D/ kg 

of diet. Dried whole egg provided an additional 12.6 µg vitamin D per kg of the experimental 

diet, which is ~50% greater than the level provided by the vitamin mix in the casein-based diet 

(Table 1). All diets and water were provided ad libitum.  For diet preparation, dry ingredients 

were individually weighed and combined in a countertop 12-quart mixer (Hobart, Troy, OH). 

After mixing the dry ingredients, wet ingredients were blended in during the final mixing stage. 

Diets were stored at 4ºC throughout the duration of the study and experimental diets were 

initiated on day 4, following the acclimation period.   

 

Study design. Rats were maintained on their respective diets for 8 weeks, thereby reaching a 

sufficient age to ensure a diabetic state was achieved in the ZDF rats, as well as vitamin D 
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insufficiency 6. Prior to sacrifice on day 65, rats were housed in metabolic cages during which 

food was withheld, but water was provided ad libitum. After 12 h, urine was collected and 

stored at -80°C until analysis. Rats were anesthetized with a ketamine: xylazine cocktail (90:10 

mg/kg body weight) via a single intraparitoneal injection and whole blood was collected via 

cardiac puncture. Liver, kidney, and abdominal fat were removed and weighed. Euthanasia 

was achieved by exsanguination.  

 

Biochemical assessment. Blood glucose concentrations were measured at the time of sacrifice 

using a glucometer (Bayer Inc., Mississauga, Canada). Urinary creatinine concentrations were 

measured using a commercial colormetric kit (Cayman Chemical, Ann Arbor, MI), as 

previously described (10). Plasma triglyceride concentrations were measured using a 

commercial colorimetric kit (BioAssay Systems, Hayward, CA). The assay uses a one-step 

combination of triglyceride hydrolysis, glycerol formation and dye reagent oxidation. Color 

intensity is measured at 570 nm and is proportional to triglyceride levels in the plasma. Plasma 

and urinary 25D were measured by using a commercial enzyme immunoassay kit 

(Immunodiagnostic Systems, Scottsdale, AZ) as previously described (6). Total 25D excreted 

in the urine was calculated and normalized to urinary creatinine. 

 

Statistical analysis. All data were analyzed using SigmaPlot 9.0 (Systat Software Inc). 

Evaluation of statistically significant differences (P < 0.05) between group means was 

performed using a two-way ANOVA (genotype x diet) followed by Student-Newman-Keuls 

Method for multiple comparisons. 
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Results 

Body and Tissue Weights. The cumulative weight gain in the 4 treatment groups over the 8-

week experimental period is shown in Figure 1. Initially, ZDF rats fed the casein-based diet 

gained weight more rapidly than the other groups. There were no significant differences in 

weight gain patterns between the lean casein and lean whole egg groups. On d 29, the 

cumulative weight gain exhibited by the ZDF rats in the whole egg group began to plateau 

compared to the other 3 treatment groups whose weight continued to increase. At the 

conclusion of the study, ZDF rats fed the whole egg-based diet exhibited a 40% decrease in 

cumulative weight gain compared to the casein-fed ZDF rats, as well as both lean control 

groups (P < 0.001). Final body weight and tissue weights (g/100 g body weight) are presented 

in Table 2. Though no significant differences were observed in liver, kidney or adipose relative 

weights across diets within the ZDF or lean rats, there were notable differences in these relative 

tissue weights between genotypes. Regardless of diet, ZDF rats exhibited an 83, 36, and 267% 

increase in the relative weight of the liver, kidney and abdominal adipose tissue, respectively. 

Similar to the cumulative weight gain in Figure 1, the final body weight of ZDF rats fed the 

whole egg diet was 20% lower than ZDF rats fed a casein-based diet. 

 

Blood Glucose and Plasma Triglycerides Concentrations. Comparisons of blood glucose and 

plasma triglyceride concentrations are shown in Figure 2. As expected, ZDF rats had an 

approximately 4-fold increase in blood glucose concentrations at the end of the 8-week 

experimental period compared to lean rats where both groups were fed the casein-based diet. 

There was no significant difference in blood glucose concentrations between lean rats fed a 

whole egg- or casein-based diet. However, the whole egg-based diet attenuated hyperglycemia 

by 49% in ZDF rats (P = 0.008). Similar to blood glucose concentrations, plasma triglyceride 
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concentrations were highest in ZDF rats fed the casein-based diet. No statistical significance 

was observed in plasma triglyceride concentrations between the two diets in lean rats. 

However, consumption of the whole egg-based diet resulted in a 52% decrease in plasma 

triglyceride concentrations in ZDF rats fed the egg-based diet compared to casein (P < 0.001). 

 

Plasma 25D Concentrations. As expected, plasma 25D concentrations of ZDF rats fed the 

casein-based diet were 53% lower than lean rats fed the casein-based diet (Figure 3). However, 

diabetic rats fed the whole egg-based diet exhibited circulating 25D concentrations that were 

the same as lean controls fed the casein containing diet. Furthermore, circulating 25D 

concentrations in ZDF rats in the whole egg group were 148% higher than ZDF rats in the 

casein group (P = 0.009). Whole egg also resulted in a 2-fold increase in circulating 25D 

concentrations in lean rats (P < 0.001). As expected, the whole egg-based diet was without 

effect on diminished urinary creatinine concentrations nor the loss of 25D in the urine of ZDF 

rats (data not shown). 

 

Discussion 

The abundance of vitamin D-rich foods available in today’s market are insufficient and 

do not meet the recommended daily requirement for healthy Americans. Furthermore, 

researchers have postulated that a large proportion of the population exhibits serum 25D 

concentrations that are substantially lower than what is required for reducing chronic disease 

risk (11-14). This proof-of-principle study clearly demonstrates that whole egg consumption 

results in increased plasma 25D concentrations, attenuated hyperglycemia and 

hypertriglyceridemia, as well as reduced weight gain in T2D rats. These findings suggest that 

dietary whole egg consumption is a valuable source of vitamin D, 25D in particular, for the 
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T2D phenotype characterized by vitamin D insufficiency. Because whole egg is a natural food 

source of 25D it represents an ideal dietary strategy to maintain vitamin D homeostasis in T2D, 

as well as reducing characteristic elevations of plasma glucose and triglycerides.  

Though 25D is known to be present in eggs and other animal-based foods, there is no 

current standardized method to determine 25D concentrations. The amount reported is 

inconsistent and is not included in estimates of vitamin D intake in the U.S (8, 15, 16). A recent 

study by Taylor et al. (8) utilized the concept of a potency factor to better determine 25D 

activity in meat and eggs. The authors designated 5 as an appropriate potency factor for their 

calculations based on the strength of previous studies. It also represents the middle value within 

the range of reported potency factors. Ostensibly, when the vitamin D content of these foods 

was recalculated using a potency factor of 5, concentrations of 25D increased in microgram 

increments. Preliminary USDA data estimates 0.65± 0.08 µg 25D/100 g whole egg. After the 

potency factor is applied the value increases to 3.25 µg 25D/100 g whole egg, or 130 IU (8). 

To put it in perspective for the consumer, a standard large egg of 50 g contains 65 IU of 25D, 

which provides 11% of the DRI (17).  

The current literature regarding the impact of whole egg consumption for individuals 

with T2D is contradictory; thus, dietary recommendations for individuals with T2D and egg 

consumption are problematic. Although some studies concluded egg consumption increased 

T2D risk and related complications, others have not found such an association (18-20).  A 

study by Pearce et al. (21) reported that egg consumption, along with other dietary 

modifications, improved glycemic and lipid profiles in individuals with T2D. Similarly, others 

have found diets containing whole eggs exhibit a positive impact on glucose tolerance and 

insulin sensitivity (9, 22). Here, we demonstrated that whole egg consumption resulted in 
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approximately a fifty percent reduction in hyperglycemia. A likely explanation for this could 

be a diet effect on body weight, with respect to the relationship between obesity and impaired 

glucose homeostasis. The same group of rats, with improved glucose concentrations, also 

gained significantly less weight than the other three groups. Because we did not monitor food 

intake, it is possible that ZDF rats consumed less of the whole egg-based diet; however, a 

number of arguments diminish the likelihood of this explanation. First, lean control and ZDF 

rats fed the casein-based diet, as well as lean rats fed the whole-egg based diet followed the 

same pattern in weight gain. This eliminates the argument that the whole egg content of the 

diet itself would result in a decrease in food intake. Second, previous research with the same 

design (Berdanier et al.) found no difference in food intake with a similar weight gain pattern 

as was found in our study. Although they used a different rat model of T2D, the reduction in 

weight gain in the diabetic rats consuming the egg-based diet, provided at the same level as we 

employed, was similar in magnitude. More importantly, and key to our conclusions, they found 

no significant difference in food intake patterns between diabetic groups fed whole egg-based 

compared to casein-based diets in a study that was conducted for a much longer period of time 

than the 8 weeks reported here. 

Our laboratory recently demonstrated that excessive urinary excretion of 25D–DBP 

and albuminuria occurred in rats with type 1 diabetes and T2D. Feeding diabetic rats high-

amylose maize partially resistant to digestion prevented excretion of albumin and 25D–DBP, 

suggesting that vitamin D balance in T2D can be maintained by dietary resistant starch by its 

nephroprotective actions without vitamin D supplementation (6, 23). Because we did not 

expect whole egg to be nephroprotective, it is not surprising that whole egg did not impact 

urinary loss of 25D. In the future, investigating the impact of a diet comprised of both resistant 
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starch and whole egg may yield more robust outcome with respect to vitamin D balance and 

glucose homeostasis, than either dietary component individually.  

In summary, this study demonstrates that a whole egg-containing diet is a highly 

effective strategy to maintain circulating 25D concentrations in T2D. Future work will include 

a dose-response study to determine the minimal amount of whole egg required to provide 

beneficial effects with respect to maintaining vitamin D balance. Because the ZDF rat 

represents an extreme model of T2D relative to humans, it can be theorized that the benefits of 

whole egg on vitamin D balance could be produced clinically by a diet containing much less 

whole egg than was used for this study. Additionally, direct measurements of body 

composition will be needed to be better characterize the weight differences observed in diabetic 

rats fed whole egg compared to the other groups. 
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Tables and Figures 

 

Figure 1. Whole egg consumption reduced cumulative weight gain in Zucker diabetic fatty 
(ZDF) rats. ZDF rats and their lean controls were fed either a casein- or whole egg-based diet 
for 8 weeks. Weights were recorded daily and are reported as cumulative weight gain from d 
0. Data are means ± SEM (n=5). At each time point, values without a common letter are 
statistically significant (P < 0.05). 
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Figure 2. Whole egg consumption reduced characteristic elevations in blood glucose (A) and 
triglyceride concentrations (B) in Zucker diabetic fatty (ZDF) rats. Male ZDF rats and their 
lean controls were fed either a casein- or whole-egg based diet for 8 weeks. At the end of the 
treatment period rats were anesthetized, and whole blood was collected by cardiac puncture. 
Blood glucose concentrations were measured at the time of sacrifice using a glucometer. 
Triglyceride concentrations were analyzed using a commercial colorimetric kit.  Data are 
means ± SEM (n=5). Bars without a common letter are statistically significant (P < 0.05). 
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Figure 3. Whole egg consumption increased circulating 25-hydroxyvitamin D concentrations 
in Zucker diabetic fatty (ZDF) and lean control rats. Male ZDF rats and their lean controls 
were fed either a casein- or whole-egg based diet for 8 weeks. At the end of the treatment 
period rats were anesthetized, and whole blood was collected by cardiac puncture. 25D 
concentrations were measured using a commercial enzyme immunoassay kit. Data are means 
± SEM (n=5). Bars without a common letter are statistically significant (P < 0.05). 
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Table 1. Composition of casein-based and whole egg-based diets fed to lean control and 
Zucker Diabetic Fatty rats for 8 weeks 

ingredient1 casein-based whole egg-based 

 g/kg 

casein (vitamin free) 200 0 

dried standard whole egg type 
350 2, 3 

0 408 

cornstarch 437 392 

glucose (monohydrate) 150 150 

mineral mix (AIN 93) 35 35 

vitamin mix (AIN 93) 3 10 10 

corn oil 163 0 

choline bitartrate 2 2 

L-methionine  3 3 

1 Ingredients were purchased from Harlan Teklad (Madison, WI) with the exception of dried whole 

egg (Rose Acre Farms, Guthrie Center, IA) as well as L-methionine and choline bitartrate (Sigma 

Aldrich, Milwaukee, WI). 

2 Total protein and lipid content provided by 408 g of whole egg is 49% (200 g) and 40% (163 g), 

respectively.  

3 Total vitamin D provided by casein-based and whole egg-based diets are 25 and 37.6 µg/kg diet, 

respectively. 
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Table 2. Final body weights and relative tissue weights of lean control and diabetic Zucker 
Diabetic Fatty (ZDF) rats fed a casein or whole egg-based diet for 8 weeks 1 

                      lean 
     casein               whole egg 

                    ZDF 
     casein             whole egg 

final body weight (g) 358 ± 11a,b 377 ± 11a 400 ± 15a 320 ± 12b 

liver (g/100 g body weight) 3.01 ± 0.35b 3.30 ± 0.15b 5.52 ± 0.19a 6.00 ± 0.06a 

kidney (g/100 g body weight) 0.65 ± 0.04b 0.56 ± 0.02b 0.80 ± 0.04a 0.84 ± 0.04a 

adipose (g/100 g body weight) 0.47 ± 0.10b 0.58 ± 0.11b 2.03 ± 0.40a 1.83 ± 0.15a 

1 Values are the mean ± SEM (n =5). 
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Abstract 

Background: Type 2 diabetes (T2D) is characterized by vitamin D insufficiency owing to 

excessive urinary loss of 25-hydroxycholecalciferol (25(OH)D). We previously reported that 

a diet containing dried whole egg, a rich source of vitamin D, was effective at maintaining 

circulating 25(OH)D concentrations in T2D rats. Furthermore, whole egg consumption 

reduced body weight gain in T2D rats.  

Objective: This study was conducted to compare whole egg consumption to supplemental 

cholecalciferol with respect to vitamin D balance, weight gain, and body composition in T2D 

rats.  

Methods: Male Zucker diabetic fatty (ZDF) rats (n= 24) and their lean controls (n=24) were 

obtained at 5 wk of age and randomly assigned to 3 treatment groups: a casein-based diet 

(CAS), a dried whole egg-based diet (WE), or a casein-based diet containing supplemental 

cholecalciferol (CAS+D) at the same level of cholecalciferol provided by the dried whole 

egg-based diet (37.6 µg/kg diet). Rats were fed their respective diets for 8 wk. Weight gain 
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and food intake were measured daily, circulating 25(OH)D concentrations were measured by 

ELISA, and body composition was analyzed by dual X-ray absorptiometry.  

Results: Weight gain and percent body fat were reduced by approximately 20% and 11%, 

respectively, in ZDF rats fed WE compared to ZDF rats fed CAS or CAS+D. ZDF rats fed 

CAS had 21% lower serum 25(OH)D concentrations than lean rats fed CAS. In ZDF rats, 

WE consumption increased serum 25(OH)D concentrations 130% compared to CAS, 

whereas consumption of CAS+D increased serum 25(OH)D concentrations 35% compared to 

CAS.  

Conclusion: Our data suggest that dietary consumption of whole egg is more effective than 

supplemental cholecalciferol in maintaining circulating 25(OH)D concentrations in T2D rats. 

Moreover, whole egg consumption attenuated weight gain and reduced percent body fat in 

ZDF rats. These data may support new dietary recommendations targeting prevention of 

vitamin D insufficiency in T2D. 

 

Introduction  

Although vitamin D insufficiency is common globally, it is highly predominate in 

type 2 diabetes (T2D), affecting 70-90% of the T2D population (1-3). Vitamin D 

insufficiency is defined as circulating 25-hydroxycholecalciferol (25(OH)D) concentrations 

between 30-50 nmol/L (12-20 ng/mL), whereas deficiency is defined as serum 25(OH)D 

concentrations below 30 nmol/L (12 ng/mL). Evidence from prospective studies suggests a 

correlation between inadequate vitamin D concentrations and T2D (4-6). Specifically, 

vitamin D deficiency may be a factor in the development of insulin resistance as well as the 

pathogenesis of T2D by affecting either insulin sensitivity, β-cell function or both (7-9); 

however, other studies have found little or no association between T2D and these measures 
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(10, 11). Furthermore, we have found that diabetic nephropathy, a well-characterized 

complication of T2D, leads to excessive urinary excretion of circulating 25(OH)D and 

vitamin D binding protein (DBP), thereby exacerbating vitamin D deficiency (12-14). 

Therefore, there is a critical need to identify dietary intervention strategies to prevent and/or 

treat vitamin D deficiency in the diabetic population.  

Dietary vitamin D exists in two forms, ergocalciferol (vitamin D2) and 

cholecalciferol (vitamin D3). The most abundant dietary form is cholecalciferol, which is 

metabolized in the liver to 25(OH)D by humans and animals; therefore, animal-based foods 

are a source of 25(OH)D as well as cholecalciferol. The precursor form of active vitamin D is 

25(OH)D, which, in the circulation, reflects an individual’s vitamin D status. Vitamin D 

recommendations for diabetics are inconsistent. Randomized clinical trials focusing on T2D 

outcomes vary with respect to vitamin D dose and regimen, ranging from 1000-6000 IU/ d to 

20,000-40,000 IU /wk with study durations lasting from several months to years. Results 

from these studies differ with respect to improvements in fasting blood glucose, glycated 

hemoglobin (HbA1c), and insulin sensitivity (15-19). While the current RDA for vitamin D 

in adults is 600 IU/ d, supplementation guidelines remain an intense topic of debate. 

Although an intake of 600 IU/d is sufficient to support musculoskeletal health, more studies 

are needed to clearly assess the impact of supplementary cholecalciferol on chronic diseases 

(20). As reviewed by Mathieu (21), growing evidence supports the adoption of the 

international guidelines on supplementation of cholecalciferol at 500-1000 IU/d to prevent 

vitamin D deficiency and reduce the risk of T2D onset.  

Treatment of T2D is primarily focused on lifestyle modifications, including 

improvements in diet and physical activity, to promote weight loss and improve blood 
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glucose control. We have previously shown that dietary resistant starch was an effective 

dietary strategy for maintaining vitamin D balance by protecting renal health, thereby 

preventing urinary excretion of 25(OH)D and DBP. In contrast, the present study utilized 

dried whole eggs to focus on increasing dietary consumption of vitamin D as a means to 

improve vitamin D status. Whole eggs are an excellent source of vitamin D, in the form of 

both 25(OH)D and cholecalciferol, which is found exclusively in the yolk (22). Promoting 

egg consumption has been a controversial diet recommendation for individuals with T2D 

because of the rich cholesterol content of eggs. Because diabetics are at an increased risk for 

cardiovascular disease (CVD), they have been encouraged to limit the number of eggs they 

consume. To date, there are a number of studies that contradict the relation between egg 

consumption and chronic disease (23-27). More importantly, recent revisions to the Dietary 

Guidelines for Americans no longer include recommendations to limit intake of dietary 

cholesterol, a decision based on the growing body of research showing that dietary 

cholesterol intake has little effect on serum cholesterol concentrations and subsequent health 

risks (28). Furthermore, numerous human studies report that egg consumption is associated 

with increased satiety, which leads to reduced overall caloric intake (29-33). Some human 

studies also report that egg consumption promotes weight loss; however, the literature 

regarding the effect of egg consumption on body weight management remains inconsistent 

(34, 35). Nevertheless, a growing body of research demonstrates several benefits of whole 

egg consumption, such as the high nutrient content and satiating effect of whole eggs; thus, 

dietary whole egg consumption may be beneficial in the diabetic population (36-38).   

We previously reported that a dried whole egg-containing diet is a highly effective 

strategy to maintain circulating 25(OH)D concentrations in T2D rats (39). Additionally, 
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whole egg consumption reduced weight gain in diabetic rats. Thus, the primary objectives of 

this follow-up study were 1) to compare the vitamin D provided by whole eggs to a diet 

supplemented with cholecalciferol in maintaining serum vitamin D balance and 2) to further 

investigate the effect of whole egg consumption on weight gain and body composition in 

T2D rats. 

 

Materials and Methods 

Animals and Diets. All animal studies were approved by the Institutional Animal Care and 

Use Committee at Iowa State University and were performed according to the Iowa State 

University Laboratory Animal Resources Guidelines. Male Zucker diabetic fatty (ZDF; fa/fa) 

rats (n= 24) and lean (fa/+) control rats (n= 24) were purchased at 5 wk of age (Charles River 

Laboratories). Rats were housed individually in plastic cages in a temperature-controlled 

room with a 12-h light-dark cycle. All diets were formulated and pelleted by Research Diets, 

Inc. Dried whole egg was purchased from Rose Acre Farms and sent to Research Diets, Inc. 

for diet formulation. All rats were acclimated to a semi-purified diet (AIN-93G) for 1 wk. 

Rats were randomly assigned to 1 of 3 experimental diets (Figure 1): a casein-based diet 

(CAS), a dried whole egg-based diet (WE), or a casein-based diet containing supplemental 

cholecalciferol (CAS+D) provided at the same level of cholecalciferol supplied by the WE 

diet (37.6 µg/kg diet). Vitamin mix in all diets provided 25 µg vitamin D/kg diet. The whole 

egg diet contained an additional 12.6 µg cholecalciferol/kg diet, thus, the WE diet provided a 

total of 37.6 µg cholecalciferol/kg diet. This level was matched in the CAS+D diet with the 

addition of 12.6 µg cholecalciferol.  All diets provided protein at 20% (w/w) and were 

matched for lipid content (18.3%) via the addition of corn oil to the CAS and CAS+D diets, 

accounting for the additional lipid provided by the dried whole egg. Rats were given ad 
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libitum access to food and water for 8 wk. Food intake was recorded daily for each rat 

beginning at wk 3 of the study. Pelleted diets were weighed and distributed daily. 

Consumption was defined as the difference in pellet weight within a 24 h period. Prior to 

sacrifice, rats were placed in metabolic cages for 12 h, during which urine was collected and 

then stored at -80˚ C for subsequent analysis. Rats were anesthetized via a single 

intraperitoneal injection of ketamine:xylaxine (90:10 mg/kg body weight). Whole blood was 

collected via cardiac puncture and blood glucose was measured using a glucometer (Bayer 

Healthcare). Body fat, lean body mass, bone mineral density and bone mineral content were 

measured post-necropsy using dual energy x-ray absorptiometry (DEXA). 

 

Biochemical Analysis. Analysis of serum and urinary creatinine was measured using 

commercially available colorimetric kits (Cayman Chemical). Urinary total protein 

concentrations were measured using a bicinchoninic acid assay (Thermo Scientific Pierce), 

serum concentrations of 25(OH)D were analyzed using a commercial enzyme immunoassay 

kit (Immunodiagnostic Systems), and urinary concentrations of 25(OH)D and DBP were also 

analyzed using a commercial enzyme immunoassay kit (Immunodiagnostic Systems and Life 

Diagnostics, respectively) as previously described (12, 13, 40). Authenticity of all kits for use 

on rodent biological samples has been verified by the manufacturer.  

 

Statistical Analysis. All data were analyzed using SigmaPlot 9.0 (Systat Software Inc.). 

Mean values were evaluated for statistically significant differences (P < 0.05) using a two-

way ANOVA (genotype x diet) followed by the Fisher’s Least Significant Difference (LSD) 
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post hoc test for multiple comparisons. Nonparametric analysis was utilized when normality 

failed or variances were unequal using a Kruskal-Wallis one-way ANOVA on Ranks. 

 

Results 

Whole egg consumption reduced total body weight and cumulative weight gain despite 

increased food intake in ZDF rats. Lean and ZDF rats initially gained the same amount of 

weight across all dietary groups within a given genotype. As expected, ZDF rats fed the CAS 

and CAS+D diets gained more weight throughout the study compared to all lean control rats 

(Figure 1A). However, ZDF rats fed WE exhibited a plateau in cumulative weight gain 

beginning on d 10 and an approximate 20% reduction in weight gain compared to ZDF rats 

fed CAS and CAS+D after 8 wk of dietary treatment. Furthermore, cumulative weight gain in 

ZDF rats fed WE was statistically equivalent to all lean control rats beginning on d 22, and 

for the remainder of the study. Although ZDF rats fed WE gained less weight than ZDF rats 

fed CAS and CAS+D, total food intake in ZDF rats fed WE was approximately 7% higher 

compared to ZDF rats fed CAS and CAS+D (Figure 2). Beginning at wk 5, ZDF rats fed WE 

had higher weekly food intake per 100 g body weight compared to ZDF rats fed CAS and 

CAS+D, whereas weekly food intake (g/100 g body weight) did not differ in lean rats 

regardless of diet (Figure 1B). Moreover, cumulative weight gain and total food intake did 

not differ between the lean control rats fed either CAS, CAS+D or WE. There were no 

differences in the food efficiency ratio within the ZDF genotype. In contrast, the food 

efficiency ratio [(weight gain, g/food intake, g) x 100].) was 12% lower in lean rats fed WE 

compared to lean rats fed CAS (Table 2).  
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ZDF rats fed WE exhibited a lower body fat percentage than ZDF rats fed CAS and 

CAS+D. Percent body fat and percent lean body mass are presented in Figure 2. Percent body 

fat did not differ between dietary groups within lean control rats. In contrast, WE 

consumption in ZDF rats reduced body fat percentage by 8 and 13%, respectively, compared 

to ZDF rats fed CAS and CAS+D. Lean body mass was increased by 11% in ZDF rats fed 

WE compared to ZDF rats fed CAS+D, whereas lean body mass did not differ, regardless of 

diet, within the lean rats. Bone mineral density did not differ across all dietary groups and 

genotypes (Table 2). Bone mineral content, expressed as a percentage of body weight, did 

not differ between dietary groups within the lean control rats. Because bone mineral content 

was corrected for body weight, bone mineral content was 7 and 9% higher, respectively, in 

WE-fed ZDF rats than in ZDF rats consuming CAS or CAS+D.  

 

The WE diet elevated circulating 25(OH)D concentrations to a greater extent than the 

CAS+D diet. Serum 25(OH)D concentrations of all treatment groups are shown in Figure 3. 

As expected, ZDF rats fed CAS had lower (21%) serum 25(OH)D concentrations than their 

lean counterparts fed CAS. The WE diet increased 25(OH)D concentrations by 130% 

compared to ZDF rats fed CAS, whereas CAS+D increased circulating 25(OH)D by only 

35% compared to ZDF rats fed CAS. Likewise, serum 25(OH)D concentrations of lean rats 

fed CAS+D and the WE diet were increased by 19% and 113%, respectively, compared to 

lean rats fed CAS. When compared to CAS+D, WE increased serum 25(OH)D 

concentrations by 80% and 70% in lean and ZDF rats, respectively.  
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Serum and urinary biochemical measurements. The presence of hyperglycemia in ZDF rats 

confirmed the diabetic state; however, blood glucose did not differ between dietary groups 

within the lean or ZDF genotype.  In lean rats fed WE, serum insulin was lower than all other 

dietary groups. The homeostatic model assessment of insulin resistance (HOMA-IR) was 

decreased by 80 and 71%, respectively, in lean rats fed WE compared to lean rats fed CAS 

and CAS+D. HOMA-IR values did not differ between dietary groups within the ZDF 

genotype. Urinary output, urinary 25(OH)D, urinary DBP and serum creatinine were 

increased in ZDF rats compared to lean rats. Urinary creatinine excretion was reduced in 

ZDF rats fed CAS and CAS+D by approximately 67% and 79%, respectively, compared to 

all lean rats. In contrast, urinary creatinine excretion did not differ in ZDF rats fed the WE 

diet compared to all lean rats. Urinary total protein excretion did not differ between lean and 

ZDF rats. WE consumption was without effect on urinary measures within the lean or ZDF 

genotype. Likewise, there were no differences in serum creatinine within lean or ZDF rats 

Table 3. 

 

Discussion 

We have previously shown that a dried whole egg-based diet is a highly effective 

strategy for maintaining serum 25(OH)D concentrations in rats with T2D (39). The present 

study demonstrates that vitamin D derived from whole egg may be more effective than an 

equivalent amount of supplemental cholecalciferol added to a casein-based diet at 

maintaining serum 25(OH)D concentrations. Serum 25(OH)D concentrations were markedly 

higher in both lean and ZDF rats fed WE compared to rats fed CAS+D. Consumption of the 

WE diet in ZDF rats resulted in elevated serum 25(OH)D despite urinary losses due to the 

presence of diabetic nephropathy. All ZDF rats exhibited excessive urinary excretion of 



www.manaraa.com

93 

 

25(OH)D regardless of dietary group, which suggests that the increase in serum 25(OH)D in 

ZDF rats fed the WE diet was due to a mechanism other than attenuated urinary losses. The 

difference in serum 25(OH)D concentrations between the WE and CAS+D diets may be due 

to the potency of 25(OH)D contained within whole eggs. In support of this theory, Cashman 

et al. carried out a human study comparing orally supplemented 25(OH)D to cholecalciferol 

and found that oral supplementation with 25(OH)D raised serum 25(OH)D concentrations 

five times more than an oral cholecalciferol supplement per microgram consumed (41). As 

reviewed by Ovesen et al., a number of studies have reported 25(OH)D to be more potent 

than the equivalent amount of cholecalciferol in raising serum concentrations of 25(OH)D, 

however, the exact potency factor remains undetermined (42).  

Nutritionally, eggs boast a number of benefits; they are rich in high quality protein, 

contributing to satiety; contain a high nutrient-to-energy density ratio, and are inexpensive 

and easy to prepare (24, 43). Furthermore, egg consumption has been shown to increase 

circulating HDL-cholesterol concentrations, which is associated with lower CVD risk (44-

46). Despite these advantages, there remains a negative perception toward egg consumption 

for individuals with diabetes.  Previous studies have suggested that high egg consumption 

may be associated with higher CVD outcomes in people with T2D, a population already at 

risk for CVD (47-49); however, more recent studies contradict this finding. A randomized 

control trial found that consuming 2 eggs per d for 3 mo did not negatively affect the lipid 

profile of diabetics (23).  A similar study reported that egg consumption, in combination with 

healthy dietary changes, improved glucose homeostasis, as well as lipid profiles in a diabetic 

population (45). Furthermore, the 2015 Dietary Guidelines for Americans no longer include 

recommendations to limit intake of dietary cholesterol as a direct result of the decades of 
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research demonstrating little effect of dietary cholesterol on serum cholesterol concentrations 

and subsequent health risks (50). Taken together, egg consumption, as a source of vitamin D, 

represents a reliable dietary intervention strategy for maintaining serum 25(OH)D 

concentrations in diabetics without posing additional heart health risks.  

We previously reported that whole egg consumption attenuated weight gain in ZDF 

rats fed a dried whole egg-based diet compared to ZDF rats fed a casein-based diet (39). In 

the present study, ZDF rats fed WE exhibited a marked reduction in cumulative body weight 

gain compared to ZDF rats fed CAS and CAS+D. Furthermore, cumulative body weight gain 

in ZDF rats fed WE was the same as all lean control rats; thus, the reduction in cumulative 

body weight gain by WE is genotype specific, only occurring in the obese, diabetic state. The 

observed decrease in body weight in ZDF rats fed WE was, in part, due to a decrease in body 

fat percentage compared to ZDF rats fed CAS and CAS+D. In our recent unpublished 

observations using a diet-induced model of obesity in Sprague Dawley rats, cumulative 

weight gain was decreased by 23% in diet-induced obese rats fed a dried whole egg-based 

diet compared to diet-induced obese rats fed a casein-based diet. Moreover, diet-induced 

obese rats fed the dried whole egg-based diet gained the same amount of weight as control 

rats fed casein- and dried whole egg-based diets. These findings support the concept that 

whole egg consumption reduces weight gain in an obese state in both genetic and diet-

induced models, whereas whole egg consumption is without effect on body weight in a lean 

phenotype. Previous studies have attributed differences in body weight following a whole 

egg-based diet to increased satiety, while others have found no difference in food intake (29-

33). However, in the present study, we report an increase in food intake in ZDF rats fed WE, 

suggesting that the reduction in body weight in the ZDF genotype is likely the result of a 
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mechanism other than satiety. Furthermore, we found no difference in the food efficiency 

ratio in ZDF rats within any of the dietary groups. Others have suggested dietary fat as a 

potential mechanism and there is evidence to support that dietary fat composition may 

influence final body weight or weight gain in an obese state, depending on the ratio of 

unsaturated to saturated fatty acids (51, 52). Other potential mechanisms include changes in 

thermogenesis or energy expenditure and alterations in the gut microbiome. Several rodent 

and human studies have found an association between obesity and modifications to the 

intestinal microbiota; thus, it is possible that a component of the WE diet interacts with the 

intestinal microbiota in an obese state only (53, 54). Further studies are needed to elucidate 

the mechanism by which whole egg consumption attenuates weight gain in both the 

genotype- and diet-induced obese phenotype.  

In conclusion, the present study demonstrates that dietary consumption of whole egg 

may be more effective than supplemental cholecalciferol in maintaining normal circulating 

25(OH)D concentrations in T2D. Furthermore, whole egg consumption results in reduced 

body weight gain in obese, type 2 diabetic rats. Future dose response studies are required to 

identify the minimal amount of dietary whole egg required to maintain vitamin D 

homeostasis and attenuate body weight gain in obesity and T2D. Our findings support the 

concept that inclusion of whole eggs in the diet is an important recommendation for 

maintenance of vitamin D balance in T2D. 
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Tables and Figures 

 

Figure 1. Cumulative body weight gain (A) and food intake (B) in lean control and Zucker 
diabetic fatty (ZDF) rats fed a casein-based (CAS), whole egg-based (WE), or casein-based 
diet including supplemental cholecalciferol (CAS+D) for 8 wk. Data are mean values ± 
SEMs; n = 8. Values without a common letter differ (P < 0.05). (B) For clarity, P values 
reported are for wk 8.  G; genotype, D; diet, G x D; genotype x diet (interaction).   
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Figure 2. Percent body fat and lean body mass of lean controls and Zucker diabetic fatty 
(ZDF) rats following 8 wk dietary treatment with a casein-based (CAS), whole egg-based 
(WE), or casein-based diet including supplemental cholecalciferol (CAS+D). Data are means 
± SEMs; n = 8. Bars without a common letter differ (P < 0.05). Capital letters indicate 
differences in lean body mass and lower case letters indicate differences in percent body fat. 
An asterisk denotes a difference in lean body mass between ZDF rats fed WE and ZDF rats 
fed CAS+D when analyzed by a one-way ANOVA within the ZDF genotype. G; genotype, 
D; diet, G x D; genotype x diet (interaction).   
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Figure 3. Circulating 25-hydroxycholecalciferol (25(OH)D) concentrations of lean control 
and Zucker diabetic fatty (ZDF) rats following 8 wk dietary treatment with a casein-based 
(CAS), whole egg-based (WE), or casein-based diet including supplemental cholecalciferol 
(CAS+D). Data are means ± SEMs; n = 8. Bars without a common letter differ (P < 0.05). G; 
genotype, D; diet, G x D; genotype x diet (interaction). 
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Table 1. Composition of the casein-based diet (CAS), casein-based diet including 
supplemental cholecalciferol (CAS+D) and whole egg-based diet (WE) fed to lean control 
and Zucker diabetic fatty rats for 8 wk1 

Ingredient CAS CAS+D WE 
     g/kg 

Casein (vitamin-free) 200 200 0 

Dried standard whole egg, Type 350 2,3,4 0 0 435 

Cornstarch 417 417 365 

Glucose monohydrate 150 150 150 

Mineral Mix (AIN 93) 35 35 35 

Vitamin Mix (AIN 93) 10 10 10 

Cholecalciferol, 100,000 IU/g 0 0.00504 0 

Biotin, 1% 0 0 0.4 

Corn oil 183 183 0 

Choline bitartrate 2 2 2 

L-Methionine  3 3 3 

1All diets were formulated by and purchased from Research Diets Inc.  

2 Whole egg was purchased from Rose Acre Farms and sent to Research Diets Inc. for diet 
formulation. 

3 Total protein and lipid content provided by 435 g of whole egg were 46% (200 g) and 42% 
(183 g), respectively.  

4 Total cholecalciferol provided by the casein-based diet, casein-based diet including 
supplemental cholecalciferol and whole egg-based diet were 25, 37.6 and 37.6 µg/kg diet, 
respectively. 

1 Data are means ± SEMs; n=8. Mean values within a row without a common letter are 
statistically significant (P < 0.05).  
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Table 2. Final body weight, total food intake, bone mineral density, bone mineral content, and food efficiency ratio of lean control and 
Zucker diabetic fatty rats (ZDF) fed a casein-based diet (CAS), a casein-based diet including supplemental cholecalciferol (CAS+D) 
and a whole egg-based diet (WE) for 8 wk1 

 

1 Data are means ± SEMs; n=8. Mean values within a row without a common letter are statistically significant (P < 0.05).  

  

  Lean   ZDF   P  

Parameter CAS CAS+D WE CAS CAS+D WE Genotype Diet Genotype x Diet 

Final body weight, g 351 ± 5c 338 ± 11c 322 ± 19c 425 ± 5a 419 ± 5a 383 ± 5b <0.001 0.003 0.62 

Total food intake, g 419 ± 6c 430 ± 13c 400 ± 9c 748 ± 14b 751 ± 21b 803 ± 12a <0.001 0.419 0.006 

Bone mineral density, g/cm2 0.20 ± 0.003 0.19 ± 0.004 0.19 ± 0.005 0.19 ± 0.003 0.18 ± 0.003 0.19 ± 0.007 0.188 0.057 0.188 

Bone mineral content, (% of body 
weight 2.59 ± 0.03a 2.65 ± 0.03a 2.68 ± 0.03a 2.15 ± 0.05c 2.11± 0.03c 2.29 ± 0.02b <0.001 0.002 0.089 

Food efficiency ratio 25 ± 0.5a 24 ± 0.9a 22 ± 0.7b 10 ± 0.4c 11 ± 0.9c 9 ± 0.6c 0.037 <0.001 0.715 
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Table 3. Biochemical measurements of lean control and Zucker diabetic fatty (ZDF) rats fed a casein-based diet (CAS), a casein-based 
diet including supplemental cholecalciferol (CAS+D) and a whole egg-based diet (WE) for 8 wk 1 

 

 

1 Data are means ± SEMs; n = 8. Mean values within a row without a common letter are statistically significant (P < 0.05). 

 

 

  Lean   ZDF   P  

Biochemical Measurement CAS CAS+D WE CAS CAS+D WE Genotype Diet Genotype x Diet 

Urinary output, mL 8.7 ± 3.6b 6.8 ± 1.5b 3.1 ±	1.0b 14.6 ± 1.5a 12.9 ± 1.8a 19.9 ± 4.0a <0.001 0.71 0.043 

Urinary total protein, mg/ 12  29	± 3 48 ± 13 53 ± 5 38 ± 4 32 ± 6 37 ± 7 0.189 0.29 0.12 

Urinary creatinine, mg/12 h 3.3 ± 0.3a 3.8 ± 0.5a 2.8 ± 0.5a 1.1 ± 0.2b 0.7 ± 0.1b 1.6 ± 0.4ab <0.001 0.991 0.029 

Serum creatinine, mg/dL 2 ± 0.3b 2 ± 0.3b 2 ± 0.2b 17 ± 4a 21 ± 7a 21 ± 6a <0.001 0.968 0.929 
Urinary 25(OH)D, 
pmol/mg creatinine 66 ± 15.9b 64 ± 21.1b 46 ± 7.6b 1610 ± 691a 1700 ± 654a 1990 ± 1070a <0.001 0.95 0.938 

Urinary DBP, µg/12 h 0.910 ± 0.19b 0.983 ± 0.28b 1.01 ±0.17b 993 ± 213a 749 ± 253a 1270 ± 443a <0.001 0.523 0.523 

Blood glucose, mg/dL 256 ± 21b 291 ± 17b 284 ± 24b 688 ± 41a 560 ± 67a 693	± 43a <0.001 0.261 0.093 

Serum insulin, ng/mL 3.8 ± 0.7a 2.3 ± 0.2a 0.8 ± 0.4b 2.9 ± 0.4a 3.7 ± 0.4a 2.5 ± 0.7a 0.082 0.004 0.018 

HOMA-IR, % 54 ± 9ab 38 ± 4b 11	± 13c 113 ± 21a 117 ± 21a 99 ± 29a <0.001 0.161 0.647 
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CHAPTER 5.    WHOLE EGG CONSUMPTION EXERTS A 
NEPHROPROTECTIVE EFFECT IN AN ACUTE RODENT MODEL OF TYPE 1 

DIABETES 

Reprinted with permission from Saande, C. J.; Jones, S. K.; Rowling, M. J.; Schalinske, K. 

L., Whole Egg Consumption Exerts a Nephroprotective Effect in an Acute Rodent Model of 

Type 1 Diabetes. J Agric Food Chem 2018, 66 (4), 866-870. Copyright 2018 American 

Chemical Society.  

*CJS and SKJ contributed equally to this work. 
 

Abstract 

Nephropathy is a well characterized complication of type 1 diabetes (T1D), resulting in 

proteinuria and urinary loss of micronutrients. We previously found that a whole egg-based 

diet maintained vitamin D balance in type 2 diabetic rats despite excessive urinary losses due 

to nephropathy. The goal of this study was to investigate the impact of whole egg 

consumption in T1D rats.  Sprague-Dawley rats were randomly assigned to T1D or non-

diabetic control groups and fed a casein or whole egg-based diet for 32 days. On day 26, two-

thirds of the rats received a streptozotocin injection to induce T1D. Whole egg consumption 

attenuated polyuria, proteinuria and renal hypertrophy in T1D rats. These data suggest that 

dietary intervention with whole egg may offer renal protection in T1D. 

 

Introduction 

Type 1 diabetes (T1D) is an autoimmune-mediated disorder, which results in 

destruction of the pancreatic b-cells and a lack of endogenous insulin production. Diabetic 

nephropathy is a well-characterized microvascular complication of T1D, affecting 

approximately 32-44% of the type 1 diabetic population (1-3). Furthermore, diabetes 
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accounts for nearly half of reported cases of chronic kidney disease in the United States and 

worldwide (4). Key events in the pathophysiology of diabetic nephropathy include 

microalbuminuria and glomerular hyperfiltration, which may progress to overt proteinuria 

and a decreased glomerular filtration rate (GFR). While urinary protein excretion and 

impaired GFR are often concomitant in their presentation, they are separate manifestations of 

diabetic nephropathy and thus, do not always follow a sequential pattern (5). Renal structural 

changes such as basement membrane thickening, glomerular hypertrophy, and mesangial 

expansion are also hallmark characteristics of diabetic nephropathy (6) 

Vitamin D deficiency, defined as serum 25-hydroxycholecalciferol (25D) 

concentrations less than 12 ng/mL (i.e., 30 nmol/L), is prevalent in the diabetic population 

(7-10). A major factor associated with low vitamin D status in the diabetic population is 

compromised renal function. In the circulation, 25D is bound to its transporter, vitamin D 

binding protein (DBP). The 25D-DBP complex is taken up by the kidney via megalin-

mediated endocytosis into the renal proximal tubule where it may undergo hydroxylation to 

1,25-dihydroxycholecalciferol (1,25D), the active form of vitamin D, or be returned to 

circulation. Renal reabsorption of the 25D-DBP complex is compromised in diabetic 

nephropathy, resulting in excessive urinary excretion of 25D and DBP, which leads to 

insufficient 25D concentrations in the circulation (11-14). 

Dietary strategies to optimize nutritional status in the diabetic population are of high 

importance. We have focused on dietary intervention strategies to improve vitamin D status 

by 1) increasing dietary intake; or 2) reducing urinary loss of 25D. We have reported that 

dietary resistant starch exerts a nephroprotective effect in rodent models of both T1D and 

type 2 diabetes (T2D), thereby preventing excessive urinary 25D excretion and maintaining 
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vitamin D balance (12, 13). Whole eggs are a rich dietary source of vitamin D, which is 

concentrated within the egg yolk. In whole eggs vitamin D is found in the form of both 

cholecalciferol (i.e., vitamin D3) and 25D. We recently reported that a whole egg-containing 

diet is effective at maintaining vitamin D status in T2D rats (14). Furthermore, we have 

shown that a diet containing whole eggs may be more effective than a diet containing an 

equivalent amount of supplemental cholecalciferol at maintaining circulating 25D 

concentrations in T2D rats (15). Thus, the goal of this study was to determine the effect of 

whole egg consumption with respect to vitamin D balance and diabetic complications in an 

acute rodent model of T1D. Contrary to our studies in a T2D rat model, we did not observe 

vitamin D deficiency in an acute model of T1D; however, we did observe a nephroprotective 

effect that was not evident in a T2D model. 

 

Materials and Methods 

Chemicals. All chemicals were of analytical grade and purchased from commercial 

suppliers. Authenticity of all kits for use on rodent biological samples has been verified by 

the manufacturer. 

 

Animals and Diets. All animal studies were approved by the Institutional Animal Care and 

Use Committee at Iowa State University and were performed according to the Iowa State 

University Laboratory Animal Resources Guidelines. Male Sprague-Dawley rats (N=18) 

were obtained at 7 weeks of age (Envigo, Madison, WI, USA). After one week of 

acclimation, rats were randomly assigned to either a modified AIN-93 casein-based (n=12) or 

a whole egg-based diet (n=6) (Table 1). All diets were prepared weekly; food and water was 

provided ad libitum. Both diets provided protein at 20% (w/w) and contained the same total 
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lipid content (16.3%, w/w) by the addition of corn oil to the casein-based diet to match the 

lipid contribution by the addition of whole egg. The vitamin mix in both diets provided 25 µg 

cholecalciferol/kg diet. The whole egg-based diet contained an additional 12.6 µg 

cholecalciferol/kg diet; thus, the whole egg-based diet provided a total of 37.6 µg 

cholecalciferol/kg diet. On day 26, half of the rats (n=6) fed the casein-based diet and all rats 

fed the whole egg-based diet (n=6) received a single intraperitoneal injection of freshly 

prepared STZ (60 mg/kg body weight) (Sigma Aldrich, St. Louis, MO, USA) in citrate buffer 

(10 mM, pH 4.5) to induce T1D; control rats were vehicle-injected. All rats were sacrificed 7 

days after STZ or vehicle injection. Prior to sacrifice, rats were placed in metabolic cages for 

12 hours to ensure that they were in a fasted state and for the collection of urine, which was 

stored at -80°C for subsequent analysis. Rats were anesthetized via a single intraperitoneal 

injection of ketamine:xylazine (90:10 mg/kg body weight), whole blood was collected by 

cardiac puncture, and kidneys were removed and weighed.  

 

Biochemical Assessment. Analysis of urinary creatinine was measured using a commercially 

available colorimetric kit (Cayman Chemical, Ann Arbor, MI, USA). Urinary total protein 

concentrations were measured using a bicinchoninic acid colorimetric assay (Thermo Fisher 

Scientific, Waltham, MA, USA). Urinary concentrations of 25D and DBP were analyzed 

using commercial ELISA kits (Immunodiagnostic Systems, Gaithersburg, MD, USA, and 

Life Diagnostics, West Chester, PA, USA respectively), all as previously described (13-15). 

 

Statistical Analysis. All data were analyzed using JMP Version 10.02 (SAS Institute Inc., 

Cary, NC, USA) software. T1D groups were compared to the control using Dunnett’s test 
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(one-tailed, P < 0.05). Comparisons between the T1D groups fed the casein- versus whole 

egg-based diets were conducted using a Student’s t-test (P < 0.05). 

 

Results  

Body Weight and Serum Parameters. Cumulative weight gain over the 4-week experimental 

period is shown in (Figure 1). As expected, upon STZ injection, body weight gain decreased 

significantly in the T1D rats compared to non-diabetic rats. At the conclusion of the study, 

T1D rats fed the casein-based and whole egg-based diets gained 19% and 21% less weight 

than healthy, non-diabetic rats, respectively (Table 2). Therefore, whole egg consumption 

was without effect on STZ-induced weight loss.  T1D rats fed the casein-based and whole 

egg-based diets had blood glucose concentrations that were 147% and 112% higher 

compared to control rats, respectively (Table 2). Serum 25D concentrations were 

approximately 69% higher in T1D rats fed the whole egg-based diets compared to rats fed a 

casein-based diet, regardless of diabetes status (Table 2).   

 

Renal and Urinary Parameters. Urine output, urinary total protein, 25D and DBP 

concentrations are presented in Figure 2. As expected, 12-hour urine output was 140% higher 

in T1D rats fed the casein-based diet compared to non-diabetic rats fed the casein-based diet 

(Figure 2A). However, whole egg consumption in T1D rats resulted in the same urine output 

as non-diabetic controls. Furthermore, urine output in T1D fed the whole egg-based diet was 

54% lower compared to T1D rats fed the casein-based diet (P = 0.0032). Urinary total 

protein excretion was 412% and 156% higher, respectively, in T1D rats fed the casein- and 

whole egg-based diet compared to non-diabetic casein-fed rats.  Notably, within T1D rats, 

whole egg consumption attenuated urinary total protein loss by 50% (P = 0.0094) compared 
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to the casein-based diet (Figure 2B). Urinary 25D concentrations were 294% higher in T1D 

rats fed the casein-based diet compared to non-diabetic casein-fed rats (Figure 2C). However, 

urinary 25D concentrations in T1D rats fed a whole egg-based diet did not differ from non-

diabetic rats fed the casein-based diet. Similarly, urinary DBP concentrations were 1616% 

higher in T1D rats fed the casein-based diet compared to non-diabetic rats while urinary DBP 

excretion in T1D rats fed a whole egg-based diet did not differ from non-diabetic rats (Figure 

2D). Relative kidney weight was increased in T1D rats fed the casein and whole egg-based 

diets by 59% and 32%, respectively, compared to non-diabetic rats, indicating renal 

hypertrophy. In T1D rats, the whole egg-based diet mitigated the increase in relative kidney 

weight by 14% (P < 0.0021) compared to the casein-based diet (Table 3). No significant 

differences in urinary creatinine excretion were observed between any of the treatment 

groups (Table 3). 

 

Discussion 

The present study demonstrated that inclusion of dried whole egg in the diet of T1D 

rats exerted a nephroprotective effect, as evidenced by decreased renal hypertrophy, and 

reduced polyuria and proteinuria. A similar pattern was observed with urinary excretion of 

25D and DBP in T1D rats fed a whole egg-based diet, wherein excretion did not differ from 

either non-diabetic or T1D rats fed the casein-based diet. In clinical trials of chronic kidney 

disease, reduction of proteinuria is associated with a reduced rate of decline of kidney 

function (16-18). The risk of all-cause mortality increases with an increased degree of urinary 

albumin excretion (19, 20). Furthermore, increasing urinary albumin excretion is associated 

with a decline in GFR, although proteinuria and impaired GFR do not always present 

concomitantly (5). Because of the kidney’s role in the filtration of metabolic end products 



www.manaraa.com

113 

 

and nutrient reabsorption, the nutritional management of individuals with renal insufficiency 

is critical for reducing mortality and morbidity (21).  

According to a review co-authored by the American Heart Association and the 

American Diabetes Association, cardiovascular events occur more frequently and earlier in 

patients with T1D than in nondiabetic populations (5). Although the precise mechanisms by 

which diabetes increases the likelihood of developing CVD are not completely defined, 

various pathological conditions may be responsible, including hypertension, hyperglycemia 

and dyslipidemia (5, 22-25). Notably, it has been reported that microalbuminuria predicts 

vascular disease and that proteinuria may be a key marker for CVD and even death (5). 

Ostensibly, as nephropathy progresses, secondary metabolic disturbances may accelerate 

atherosclerosis and the onset of CVD (2). As these vascular changes emerge early in 

individuals with T1D, it is important to identify modifiable risk factors, such as dietary 

habits, to ameliorate the CVD risk profile in this population (26).  

T1D management approaches are individualized and focus largely on monitoring 

carbohydrate intake and integrating an insulin regimen to achieve glycemic control (27). 

Generally, individuals with T1D are encouraged to consume a balanced diet with an 

emphasis on produce, lean meats and whole grains and a limited intake of simple sugars and 

saturated fats (28-31). The literature on dietary egg consumption in T1D is limited. Existing 

studies in this population address dietary egg intake as part of an assessment on dietary 

patterns as a whole (26, 30, 32, 33). To the best of our knowledge, this is the first study 

investigating dietary whole eggs as a nephroprotective food and a source of vitamin D in a 

T1D model.  
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Nephropathy is a major factor implicated in vitamin D deficiency in the diabetic 

population. Because 25D circulates bound to DBP, the 25D-DBP complex must be 

internalized by the kidney for subsequent release of 25D and activation to 1,25D. Thus, as 

diabetic nephropathy progresses there is an increase in the filtration of the 25D-DBP 

complex resulting in excessive urinary loss of 25D and diminished serum 25D 

concentrations. We previously reported that a whole egg-containing diet is a highly effective 

strategy for maintaining serum 25D concentrations in T2D (14). On the basis of those 

observations, we hypothesized that a whole egg-based diet would have a similar impact on 

serum 25D concentrations in a T1D model. Although vitamin D deficiency did not develop 

in this acute model (i.e., 1 week) of T1D, it is important to note that hypovitaminosis D is 

highly prevalent among individuals with T1D (9, 34, 35). Our findings show that T1D rats 

fed whole egg had significantly higher serum 25D concentrations than casein-fed rats, 

regardless of diabetes status. Because whole egg consumption resulted in urinary 

concentrations of 25D and DBP that did not differ from non-diabetic rats, or T1D rats fed 

casein, we expect that future studies with a larger sample size may result in more robust 

differences in urinary vitamin D loss. Furthermore, studies with a longer treatment period 

following the induction of T1D may allow for sufficient time for vitamin D deficiency to 

develop; thus, we postulate that for a longer study period, whole egg consumption would 

increase circulating 25D in T1D rats due to the rich vitamin D content of dietary egg 

combined with the observed nephroprotective effects.  

The number of individuals with T1D is growing due to the increasing number of new-

onset cases in adults and those who were diagnosed in childhood with T1D and are living 

longer (36, 37). As the prevalence increases, the need for treatment modalities to prevent or 
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slow progression of T1D-related complications is critical. Our previous studies demonstrated 

that dietary resistant starch was nephroprotective in T1D and T2D rats (12, 13). The present 

study suggests that whole egg consumption may protect against polyuria, urinary protein and 

vitamin D losses, and renal hypertrophy in T1D. Future studies will investigate a diet 

containing both whole egg and resistant starch to determine whether a combination of these 

two strategies results in an additive effect with respect to renal protection and vitamin D 

balance. Understanding the mechanism underlying the nephroprotective effect of dietary 

whole egg will be a focus of future work as well. 
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Tables and Figures 

 

Figure 1. Cumulative body weight gain over the 4-week experimental period. Sprague-
Dawley rats were fed a casein-based or a whole egg-based diet for 32 days and type 1 
diabetes (T1D) was induced on day 26 in two-thirds of the rats via streptozotocin. Body 
weights were recorded daily and reported as cumulative body weight gain from day 0. Data 
are expressed as mean values ± SEMs; n = 5-6. Values with an asterisk differ from the 
control (P < 0.05).  
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Figure 2. Whole egg consumption attenuated urinary markers of nephropathy. Total urinary 
output (A), urinary total protein (B) 25-hydroxycholecalciferol (25D) and (C) vitamin D 
binding protein (DBP) concentrations (D) of male Sprague-Dawley rats following 32 days 
dietary treatment with a casein- or whole egg-based diet. Type 1 diabetes (T1D) was induced 
on day 26 in two-thirds of the rats via streptozotocin. Data are expressed as mean values ± 
SEMs; n = 4-5. Bars with an asterisk differ from the control (P < 0.05). Significant 
differences between T1D rats following a Student’s t-test are indicated by two asterisks (P < 
0.05).   
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Table 1. Composition of casein- and whole egg-based diets fed to male Sprague-Dawley 
control and type 1 diabetic rats for 32 days. 

 
1All ingredients were purchased from Envigo (Madison, WI, USA) with the exception of dried whole egg (Rose Acre Farms, 

Guthrie Center, IA, USA) as well as L-methionine and choline bitartrate (Sigma Aldrich, Milwaukee, WI, USA).  

2Total protein and lipid content provided by 408 g of dried whole egg is 49% (200 g) and 40% (163 g), respectively.  

3Total cholecalciferol provided by casein-based and whole egg-based diets are 25 and 37.6 µg/kg diet, respectively.  

  

ingredient1 casein-based diet whole egg-based diet 
 g/kg 
casein 200 0 
 
whole egg2,3 0 408 
 
cornstarch 437 392 
 
glucose 150 150 
 
mineral mix 35 35 
 
vitamin mix3 10 10 
 
corn oil 163 0 
 
choline bitartrate 2 2 
 
L-methionine 3 3 
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Table 2. Final body weight, blood glucose and serum 25-hydroxycholecalciferol (25D) 
concentrations of control and type 1 diabetic (T1D) male Sprague-Dawley rats fed a casein-
based diet or whole egg-based diet for 32 days (1). 

 

  

 control casein-based T1D casein-based T1D whole egg-based 

final body weight (g) 404 ± 9 326 ± 11* 320 ± 15* 

blood glucose (mg/dL) 258 ± 41 637 ± 76* 548 ± 133* 

serum 25D (nmol/L) 30 ± 1 33 ± 2 54 ± 3* 
 

1Data are expressed as mean values ± SEMs; n=6. Data with an asterisk differ from control (P < 0.05). 
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Table 3. Relative kidney weight and urinary creatinine concentrations of control and type 1 
diabetic (T1D) male Sprague-Dawley rats fed a casein-based diet or whole egg-based diet for 
32 days (1, 2). 

 

 

 

 

 

 

 

 control casein-based T1D casein-based T1D whole egg-based 

kidney weight (% body weight) 0.633 ± 0.025 1.009 ± 0.0327* 0.836 ± 0.0286*, ** 

urinary creatinine (mg/12 hrs) 3.3 ± 0.2 2.4 ± 0.5 
 

2.2 ± 0.8 

 
 

1Data are expressed as mean values ± SEMs; n=6. Data with an asterisk differ from control (P < 0.05).  
 
2Significant differences between T1D rats following a Student’s t-test are indicated by two asterisks (P < 0.05).   
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CHAPTER 6.    WHOLE EGG CONSUMPTION INCREASES SERUM 25-
HYDROXYVITAMIN D3 CONCENTRATIONS IN RATS WITH DEXTRAN 

SULFATE SODIUM-INDUCED COLITIS 

A manuscript prepared for submission to the Journal of Agriculture and Food 

Chemistry 

Samantha K. Pritchard, Cassondra J. Saande, Carter H. Reed, Jenna A. Roeding, Matthew J. 

Rowling and Kevin L. Schalinske 

Abstract 

Vitamin D deficiency is prevalent among individuals with inflammatory bowel 

disease (IBD) and may contribute to IBD-associated complications. We previously 

demonstrated that a whole egg-containing diet maintained vitamin D balance in type 1 and 

type 2 diabetic rats. The goal of the present study was to investigate the impact of whole egg 

consumption in dextran sulfate sodium (DSS)-induced colitis. In an initial dose response 

study, Sprague Dawley rats were maintained on a casein-based diet for 5 weeks and 

randomly assigned to 0, 3, 4 or 5% DSS-treated drinking water for the final 7 days. Serum 

25D concentrations exhibited a dose-response decrease with respect to increasing DSS 

concentrations. In a follow-up study, Sprague Dawley rats were randomly assigned to a 

casein-based diet, a dried whole egg-based diet, or a casein-based diet containing 

supplemental cholecalciferol provided at the same level of cholecalciferol supplied by the 

whole egg-based diet, for 5 weeks. Half of the rats in each group were given 3.5% DSS-

treated drinking water for the final 7 days of the study. Rats fed a whole egg-based diet 

exhibited increased serum 25D concentrations that were significantly higher than rats in 

either of the other dietary intervention groups, regardless of colitis status. These data suggest 
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that whole egg consumption may be more effective than supplemental cholecalciferol at 

increasing circulating 25D concentrations in experimental colitis.  

 

Introduction 

In 2015 approximately one-third of the adult population in the U.S. had been 

diagnosed with inflammatory bowel disease (IBD), a chronic, relapsing inflammatory 

condition of the gastrointestinal (GI) tract that is classified into two types: Crohn’s disease 

(CD) and ulcerative colitis (UC) (1). CD may affect any portion of the GI tract, from the 

mouth to perianal area. It is characterized by a discontinuous and ulcerous transmural 

inflammation that extends through the intestinal wall from mucosa to serosa. Symptoms of 

CD include abdominal pain, fever, bloody or non-bloody diarrhea, and weight loss (2).  On 

the contrary, UC is characterized by superficial mucosal inflammation and only affects the 

colon. Symptoms include rectal bleeding, diarrhea as well as abdominal pain (3). The exact 

cause of IBD remains unclear; however, it is thought to be due to a combination of a person’s 

genetics, microbiome, and the environment that result in an excessive and inappropriate 

immune response against commensal flora in genetically susceptible individuals (4). 

Vitamin D has been recognized as an environmental factor that may influence the 

pathogenesis and progression of IBD (5-8). The prevalence of hypovitaminosis D is up to 

75% in those with CD and up to 60% in individuals with UC (9). While the role of vitamin D 

signaling in the gut has not been fully elucidated, vitamin D is implicated in preserving 

mucosal integrity; thus, its deficiency may compromise or disrupt intestinal barrier function 

and lead to a local immune response (9). Factors accounting for vitamin D deficiency in IBD 

include inadequate daily intake, inflammation and glucocorticoid therapies. Importantly, 
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diarrhea, malabsorption, and GI bleed are common features of IBD; thus, nutritional 

deficiencies are common in individuals with UC and CD (5).  

Despite the wealth of research on the influence of diet and IBD, there are no 

standardized therapeutic dietary guidelines for individuals with UC and CD. Dietary 

recommendations for individuals with IBD are personalized and focus on restoring 

nutritional status and alleviating symptoms 10. Whole eggs are a rich dietary source of 

vitamin D, including both vitamin D3 and 25D, specifically found in the yolk (11). We 

recently reported that a whole egg-containing diet is effective at maintaining vitamin D status 

in type 1 and type 2 diabetic rats, diseases characterized by vitamin D deficiency (12-14). 

The literature remains inconclusive with respect to the inclusion of whole eggs in the diet for 

individuals with IBD. Although some studies conclude egg consumption is well tolerated, 

others have deemed eggs a sensitive food item for those with IBD (15-17). To date, there are 

no studies examining the consumption of whole egg specifically in individuals with IBD 

either as a dietary treatment and/or as a significant food source of vitamin D. Moreover, the 

capacity of a food item to assist with maintenance of vitamin D may be a viable avenue for 

attenuation of IBD symptoms. Thus, the goal of this study was to characterize vitamin D 

deficiency as a function of experimental colitis and compare vitamin D in a whole egg-based 

diet to a diet containing supplemental vitamin D3 (i.e., cholecalciferol), with respect to 

maintaining vitamin D homeostasis in rats with dextran sulfate sodium (DSS)-induced colitis. 

 

Materials and Methods 

Chemicals. All chemicals were of analytical grade and purchased from commercial 

suppliers. Authenticity of all kits for use on rodent biological samples has been verified by 

the manufacturer. 
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Animals and Diets. All animal studies were approved by the Institutional Animal Care and 

Use Committee at Iowa State University and were performed according to the Iowa State 

University Laboratory Animal Resources Guidelines. In an initial dose response study, 5-

week-old Sprague Dawley rats (N=24) were randomly assigned to four treatment groups of 

DSS- treated (MP Biomedicals, Santa Ana, CA, USA) drinking water (%, w/v): 0 (n=6), 3 

(n=6), 4 (n=6), and 5% (n=6). All rats were maintained on a modified AIN93 casein-based 

diet for 5 weeks. DSS-treated drinking water replaced tap water for the final 7 days of the 

study period. In a follow-up study, male Sprague Dawley rats (N=36) were obtained at 5 

weeks of age (Envigo, Madison, WI, USA). Rats were housed individually in ventilated 

cages (Innovive, San Diego, CA, USA) with a 12-hour light-dark cycle in a temperature-

controlled room. All diets were formulated and pelleted by Research Diets, Inc (New 

Brunswick, NJ, USA). Dried whole egg was purchased from Rose Acre Farms (Seymour, IN, 

USA) and sent to Research Diets, Inc. for diet formulation. Following one week of 

acclimation to a semi purified diet (AIN-93), rats were randomly assigned to 1 of 3 dietary 

treatment groups (Table 1): a casein-based diet, a dried whole egg-based diet, or a casein-

based diet containing supplemental cholecalciferol provided at the same level of 

cholecalciferol supplied by the whole egg diet (37.6 µg/kg diet). Vitamin mix in all diets 

provided 25 µg vitamin D/kg diet. The whole egg-based diet contained an additional 12.6 µg 

cholecalciferol/kg diet equating to 37.6 µg cholecalciferol/kg of the whole egg-based diet. 

This level was matched in the casein-based diet containing supplemental cholecalciferol with 

the addition of 12.6 µg cholecalciferol.  All diets provided protein at 20% (w/w) and were 
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matched for lipid content (18.3%) via the addition of corn oil to the casein-based diets, 

accounting for the additional lipid provided by the dried whole egg.  

For the final 7 days of the study, half of the rats in each diet group received 3.5% 

DSS drinking water. Based on the results of the DSS dose response study, 3.5% was 

determined to be the optimal concentration to induce experimental colitis and minimize 

premature rodent death. Rats were given ad libitum access to food and water for the 5-week 

period. For all rats in the dietary intervention study, disease index activity (DIA) scores were 

recorded daily throughout the DSS period. DIA criteria included percent weight loss, stool 

consistency, severity of rectal bleeding and color of rectal blood (18, 19). Each criterion was 

measured on a scale of 0-4 (Table 2) and then averaged together. For all studies, rats were 

placed in metabolism cages for 12 hours prior to sacrifice, to ensure that they were in a fasted 

state and for the collection of urine. Rats were anesthetized via a single intraperitoneal 

injection of ketamine:xylazine (90:10 mg/kg body weight) and whole blood was collected by 

cardiac puncture. Liver, kidney and colon were removed and weighed, colonic length was 

measured, and tissues were immediately freeze-clamped in liquid nitrogen for storage at -

80°C.  

 

Biochemical Assessment. Analysis of urinary creatinine was measured using a commercially 

available colorimetric kit (Cayman Chemical, Ann Arbor, MI, USA). Urinary total protein 

concentrations were measured using a bicinchoninic acid colorimetric assay (Thermo Fisher 

Scientific, Waltham, MA, USA). Serum and urinary 25D concentrations as well as urinary 

DBP were analyzed using commercial ELISA kits (Immunodiagnostic Systems, 
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Gaithersburg, MD, USA, and Life Diagnostics, West Chester, PA, USA respectively), all as 

previously described (12, 14, 20).  

 

Statistical Analysis. All data were analyzed using JMP Version 10.02 (SAS Institute Inc., 

Cary, NC, USA) software. Mean values were evaluated for statistically significant 

differences (P < 0.05) using a one-way or two-way (genotype x diet) ANOVA followed by 

the Tukey’s Honest Significant Difference (HSD) post hoc test for multiple comparisons. 

 

Results  

Body Weight, Food Intake and Disease Activity Index Scores. Cumulative body weight 

gain, in rats given 0, 3, 4, or 5% DSS-treated drinking water for 7 days, over the 5-week 

experimental period is shown in Figure 1A. Rats in the 4 and 5% DSS groups exhibited a 

45% reduction in body weight gain compared to rats that consumed 0 and 3% DSS drinking 

water (P < 0.0001). As expected, final body weight was lowest in the 5% DSS group (P < 

0.0001), but statistically the same when compared to rats in the 4% group (P = 0.86) (Figure 

1B). When comparing dietary treatment interventions in a follow-up study, diet was without 

effect on body weight gain patterns, regardless of whether or not rats received DSS drinking 

water (Figure 2A). No differences were observed in final body weight or food intake patterns 

across dietary groups throughout the 5-week study period, regardless of colitis status (data 

not shown). Likewise, DIA scores measured in rats with experimental colitis did not differ 

across dietary treatment groups, averaging 2.4 out of a 4.0 scale (Figure 2B).    

 

Serum Parameters and Relative Tissue Weights. Serum 25D concentrations exhibited a 

dose-response decrease with respect to increasing DSS concentrations. Serum 25D 
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concentrations were approximately 83% higher in control rats given 0% DSS drinking water 

(P < 0.0001) compared to rats in the 4 and 5% DSS groups, whose serum 25D concentrations 

were the same (Figure 3A). Rats in the 3% DSS group exhibited a 17% decrease (P = 0.001) 

in serum 25 concentrations compared to rats in the 0% DSS group, and serum 25D 

concentrations were 52% higher (P < 0.0001) compared to rats given 4 and 5% DSS-treated 

drinking water (Figure 3A).  When comparing dietary treatment effects, rats that were fed the 

whole egg-based-diet had increased serum 25D concentrations that were approximately 78% 

higher (P < 0.0005) than rats in either of the casein-based diet groups, regardless of whether 

rats consumed the 3.5% DSS-treated water (Figure 3B).  

Relative colon weight is presented in Figure 4. When comparing DSS-dose, relative 

colon weight was the same across the 0 and 3% DSS groups (P = 0.77) as well as across the 

4 and 5% groups (P = 0.80) (Figure 4A). Relative colon weight was highest in the 4% group 

compared to 0% (P = 0.0020), and 3% DSS (P = 0.0136). No differences were observed 

between the 3% and 5% DSS groups (P = 0.13) (Figure 4A). In the follow-up dietary 

intervention study, relative colon weights were significantly lower in control rats that 

received tap water compared to 3.5% DSS-treated water (P <0.0001) (Figure 4B). Rats with 

colitis fed a whole egg-based diet exhibited relative colon weights that were the same as 

healthy rats (P = 0.13); however, not different from casein-fed rats with experimental colitis 

(P = 0.54) (Figure 4B).  

Relative kidney weights exhibited an increasing trend with increasing DSS 

concentrations (Figure 5A). Compared to 0% DSS, relative weights of kidneys were 30, 39, 

and 55% higher in the 3, 4 and 5% groups, respectively (P = 0.056, P = 0.014, P = 0.002, 

respectively). Diet was without effect on relative kidney weights within rats fed the casein-
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based diet containing supplemental cholecalciferol and the whole egg-based diet, compared 

to rats fed the casein-based diet (P = 0.11); however, when analyzed using a Student’s t-test, 

rats with DSS-induced colitis exhibited significantly higher relative kidney weights 

compared to control, healthy rats (P = 0.005) (Figure 5B). 

 

Urinary Parameters. DSS dose was without effect on urine output, urinary total protein, 

creatinine, 25D and DBP in rats given 0, 3, 4 and 5% DSS-treated drinking water for 7 days 

(Table 3). Similarly, no differences in urinary parameters were exhibited across dietary 

treatment groups (Table 4). Notably, within the dietary intervention study, rats with DSS-

induced colitis exhibited significantly less urine output (P = 0.001), greater total protein 

excretion (P = 0.009) and increased urinary loss of DBP (P = 0.002) compared to healthy 

control rats (Table 4).  

 

Discussion 

We have previously shown that a dried whole egg-based diet is a highly effective 

strategy for maintaining serum 25D concentrations in rats with T1D and T2D, conditions 

characterized by vitamin D deficiency (12-14). The present study demonstrated that 4 and 

5% DSS-treated drinking water leads to a vitamin D-deficient condition in an experimental 

model of colitis in Sprague Dawley rats. Furthermore, we showed that inclusion of dried 

whole egg, in the diet of rats with and without DSS-induced colitis, was more effective than 

an equivalent amount of supplemental cholecalciferol at increasing serum 25D 

concentrations.  Serum 25D concentrations were significantly higher in rats fed a whole egg-

based diet compared to rats fed a casein-based diet containing supplemental cholecalciferol, 

regardless of colitis status.  Animal-based foods, including eggs, are known to contain 
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varying amounts of vitamin D3 and 25D (21). In fact, it has been reported that eggs contain 

higher concentrations of 25D compared to other animal-based foods (11, 22). Recent 

evidence suggests that 25D is approximately five times more potent than vitamin D3 in 

raising circulating 25D concentrations (11, 23, 24). Thus, the contrast in serum 25D 

concentrations between rats fed a whole egg-based diet versus either of the casein-based diets 

may be due to this increased potency of 25D.    

Apart from vitamin D, eggs contain a variety of other nutrients, particularly when 

compared to other animal products. They have been promoted for their high-quality protein, 

contributing to satiety, as well as for their high nutrient density-to-energy ratio (25, 26). One 

egg equates to 3.6% of total calories while at the same time providing a number of other 

nutrients in excess of its caloric contributions including iron, vitamin B12, folate, riboflavin, 

choline, and vitamin A (27). Malnutrition is a well-known complication of IBD. Based on 

BMI analysis, the prevalence of malnutrition appears to be higher in CD compared to UC, 

although there are several reports of a similar prevalence in both conditions (28-31). In 

pediatric patients with IBD, malnutrition is a primary cause of growth retardation and a 20% 

delay in puberty onset (32). The impairment of nutritional status in IBD is multifactorial. The 

leading causes include suboptimal energy intake, malabsorption, enteric nutrient loss, 

increased basal energy expenditure, and medications (9). In clinical settings, individuals with 

UC and CD are commonly found to be underweight, with several nutritional deficiencies, 

alterations of anthropometric parameters, low bone mineral density and a reduction in fat and 

muscle mass (29, 30, 33, 34).  

Because there are no specific dietary restrictions for individuals with IBD, with 

respect to management of relapse or prevention during remission, egg consumption may be 
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an optimal source of nutrients, specifically vitamin D, to support overall health in UC and 

CD. In a study assessing the efficacy of the Anti-Inflammatory Diet (IBD-AID) in the co-

management of IBD, developed by Olendzki and colleagues (17), the nutritional regimen 

restricted the intake of specific carbohydrates, included pre- and probiotic foods, and 

modified dietary fatty acids (17). The diet supported the intake of eggs as a source of omega-

3 fatty acids, though the investigators did not report quantity consumed by participants. After 

following the IBD-AID for four weeks, all 11 patients reported a reduction in symptom 

severity and were able to discontinue at least one of their IBD medications (17). Similarly, 

Chiba et al (35) found that a semi-vegetarian diet, with the inclusion of egg consumption, 

was highly effective in preventing relapse in CD (35). These studies demonstrate the 

potential for adjunct dietary therapy, with eggs as part of a balanced intake, for the treatment 

of IBD. On the contrary, a prospective cohort study investigating the dietary factors 

associated with an increased risk of relapse of UC suggested that high intake of meat and 

meat products, including eggs, predicted an increased likelihood of relapse (16). It was 

suggested that the sulfur compounds within these foods, including eggs, may mediate the 

likelihood of relapse, but further studies are required to determine if reducing their intake 

would reduce relapse frequency (16, 36). In another study assessing the role of 

macronutrients and the etiology of IBD among middle-aged French women, high 

consumption of meat or fish, but not of eggs or dairy products, was associated with IBD risk 

(37).   

Individuals with IBD often develop one or more extraintestinal manifestations (EIM) 

during the course of disease (38-40). The prevalence of EIM varies from 6-46% in human 

cases (39). Though the etiology remains unclear, EIM have been attributed to genetic factors, 
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circulating bacterial endotoxins, infectious agents and the unwanted presence of antigen-

antibody complexes in the affected tissue (39). Impaired renal function is considered an EIM 

of IBD. It has been described in UC and CD (41-43) and also reported in animal models of 

IBD (44, 45). Renal diseases in IBD include nephrolithiasis, tubulointerstitial nephritis, 

glomerulonephritis and amyloidosis (41). In the present study, our follow up investigation 

demonstrated that rats with DSS-induced colitis exhibited a decrease in urine output, 

increased proteinuria, increased urinary excretion of DBP and significantly higher relative 

kidney weights. These findings may indicate the presence of renal hypertrophy and EIM of 

experimental colitis in the kidneys. In contrast to results from our T1D study (14), in which 

whole egg consumption was found to be nephroprotective in T1D rats, diet was without 

effect on urinary parameters in rats with experimental colitis. Of note, given the extent of 

diarrhea and blood loss in colitic rats, we cannot rule out the possibility that dehydration 

contributed to the decrease in urine output and increased urinary protein loss observed in the 

present study. Additional analysis of kidney tissue is necessary to rule out hypertrophy and 

tissue injury.  

There is a high prevalence of vitamin D deficiency among individuals with UC and 

CD, owing to secondary disease complications including inflammation, malabsorption, 

diarrhea and GI bleed (9). Furthermore, a vitamin D deficient condition may exacerbate these 

symptoms (5). Although vitamin D deficiency did not develop in rats given 3.5% DSS in the 

follow-up experiment presented in this study, we expect that prolonged exposure to 3.5% 

DSS, or a higher DSS concentration for 7 days, would lead to hypovitaminosis D in colitic 

rats, as was demonstrated in the first experiment among rats in the 4 and 5% DSS groups. 

Regardless, our studies highly suggest that a whole egg-containing diet has the capacity to 
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increase circulating 25D concentrations in experimental colitis and may be more effective 

than supplemental cholecalciferol. In addition to improving the experimental model, further 

studies will also focus on the dose response of dried whole egg to determine the minimal 

amount required to maintain vitamin D homeostasis. 
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Tables and Figures 

A 

 

B 

 

Figure 1. Cumulative body weight gain and final body weight over the 5-week experimental 
period. Sprague Dawley rats were maintained on a casein-based diet for 5 weeks. 0, 3, 4 and 
5% dextran sulfate sodium-treated drinking water replaced tap water for the final 7 days of 
the study. Body weights were recorded daily and reported as cumulative body weight gain 
from day 0 (A) and body weight in grams on the final study day (B). Data are expressed as 
mean values ± SEMs; n = 4-6. Mean values without a common letter are statistically 
significant (P < 0.05).   
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Figure 2. Dietary intervention was without effect on cumulative body weight gain and 
disease activity index (DAI) scores. Sprague Dawley rats were maintained on a casein-, 
supplemental cholecalciferol- or a whole egg- based diet for 5 weeks. 3.5% dextran sulfate 
sodium-treated drinking water replaced tap water for the final 7 days of the study. Body 
weights were recorded daily and reported as cumulative body weight gain from day 0 (A). 
DIA criteria included percent weight loss, stool consistency, severity of rectal bleeding and 
color of rectal blood. Each criterion was measured individually on a scale of 0-4 and reported 
as an average per group (B). Data are expressed as mean values ± SEMs; n = 6. Mean values 
without a common letter are statistically significant (P < 0.05).  
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Figure 3. Serum 25-hydroxyvitamin D (25D) concentrations decreased with increasing 
dextran sulfate sodium concentrations and were significantly higher in rats fed a whole egg- 
based diet. Sprague Dawley rats were maintained on a casein-based diet for 5 weeks. 0, 3, 4 
and 5% dextran sulfate sodium-treated drinking water replaced tap water for the final 7 days 
of the study (A). In a follow-up study, Sprague Dawley rats were fed either a casein-, 
supplemental cholecalciferol- or a whole egg- based diet for 5 weeks. 3.5% dextran sulfate 
sodium-treated drinking water replaced tap water for the final 7 days of the study (B). For all 
studies, at the end of the treatment period rats were anesthetized, and whole blood was 
collected by cardiac puncture. 25D concentrations were measured using a commercial 
enzyme immunoassay kit. Data are expressed as mean values ± SEMs; n =4- 6. Mean values 
without a common letter are statistically significant (P < 0.05).  
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Figure 4. Relative colon weight was highest in rats given 4 and 5% dextran sulfate sodium-
treated drinking water, and the same between healthy rats and rats fed a whole egg-based 
diet. Sprague Dawley rats were maintained on a casein-based diet for 5 weeks. 0, 3, 4 and 5% 
dextran sulfate sodium-treated drinking water replaced tap water for the final 7 days of the 
study (A). In a follow-up study, Sprague Dawley rats were fed either a casein-, supplemental 
cholecalciferol- or a whole egg- based diet for 5 weeks. 3.5% dextran sulfate sodium-treated 
drinking water replaced tap water for the final 7 days of the study (B). For all studies, at the 
end of the treatment period rats were anesthetized, and whole blood was collected by cardiac 
puncture. Colons were removed, weighed and reported as grams per 100 grams of body 
weight. Data are expressed as mean values ± SEMs; n =4- 6. Mean values without a common 
letter are statistically significant (P < 0.05).  
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Figure 5. Relative kidney weight exhibited a dose-dependent response to increasing dextran 
sulfate sodium (DSS) concentrations in rats given 0, 3, 4 and 5% DSS-treated drinking water, 
and in a follow-up study remained significantly higher in rats given 3.5% DSS compared to 
rats given normal tap water.  Sprague Dawley rats were maintained on a casein-based diet for 
5 weeks. 0, 3, 4 and 5% dextran sulfate sodium-treated drinking water replaced tap water for 
the final 7 days of the study (A). In a follow-up study, Sprague Dawley rats were fed either a 
casein-, supplemental cholecalciferol- or a whole egg- based diet for 5 weeks. 3.5% dextran 
sulfate sodium-treated drinking water replaced tap water for the final 7 days of the study (B). 
For all studies, at the end of the treatment period rats were anesthetized, and whole blood was 
collected by cardiac puncture. Kidneys were removed, weighed and reported as grams per 
100 grams of body weight. Data are expressed as mean values ± SEMs; n =4- 6. Mean values 
without a common letter are statistically significant (P < 0.05). 
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Table 1. Composition of the casein-based diet, casein-based diet including supplemental 
cholecalciferol (vit D) and whole egg-based diet fed to control and experimental colitis 
Sprague Dawley rats for 5 weeks. 

ingredient1 casein vit D whole egg 
     g/kg 

casein (vitamin-free) 
 

200 200 0 

dried whole egg 2,3,4 0 0 435 

cornstarch 
 

417 417 365 

glucose monohydrate 
 

150 150 150 

mineral mix (AIN 93) 
 

35 35 35 

vitamin mix (AIN 93) 10 10 10 

cholecalciferol, 100,000 IU/g 0 0.00504 0 

biotin, 1% 0 0 0.4 

corn oil 183 183 0 

choline bitartrate 
 

2 2 2 

L-methionine  3 3 3 

1All diets were formulated by and purchased from Research Diets Inc (New Brunswick, NJ, 
USA).  

2 Whole egg was purchased from Rose Acre Farms (Seymour, IN, USA) and sent to Research 
Diets Inc. for diet formulation. 
3 Total protein and lipid content provided by 435 g of whole egg were 46% (200 g) and 42% 
(183 g), respectively.  
4 Total cholecalciferol provided by the casein-based diet, casein-based diet including 
supplemental cholecalciferol and whole egg-based diet were 25, 37.6 and 37.6 µg/kg diet, 
respectively. 
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Table 2. Disease Activity Index (DAI) Criteria1 

score % weight loss stool consistency rectal bleeding color of rectal 

blood 

0 none normal negative normal 

1 1-5  spotting red 

2 6-10 loose gross bleeding dark 

3 11-15  gross bleeding > 1 

day 

dark red 

4 >15 diarrhea gross bleeding > 2 

days 

black 

1Adapted from Rath et al, 2012 (18) and Kim et al, 2012 (19) 
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Table 3. Urinary parameters of male Sprague Dawley rats given 0, 3, 4 or 5% dextran sulfate 
sodium-treated drinking water for 7 days1 

 
0% DSS 3% DSS 4% DSS 5% DSS 

urine output 
(mL/12hr) 8.2 ± 1.5  5.8 ±  1.3  13 ± 4.0  7.3 ± 1.7  

urinary total protein 
(mg/ 12 hr) 1.3 ± 0.4  2.2 ± 0.6  0.8 ± 0.4  1.2 ± 0.5  

urinary creatinine 
(mg/12 hr) 1.9 ± 0.2 2.1 ± 0.1 1.9 ± 0.1 1.9 ± 0.3 

urinary 25D 
(pmol/mg) 72 ± 11 61 ± 15 137 ± 55 88 ± 28 

urinary DBP  
(µg/ 12 hr) 0.05 ± 0.01 0.6 ± 0.3 0.3 ± 0.1 0.4 ± 0.2 

1Data are expressed as mean values ± SEMs; n=4-6. Mean values within a row 
without a common letter are statistically significant (P < 0.05).  
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Table 4. Urinary parameters of control and colitic male Sprague Dawley rats fed a casein-
based diet, casein-based diet including supplemental cholecalciferol (vit D) and whole egg-
based diet fed to control and DSS rats for 5 weeks1, 2 

 
casein vit D whole egg 

 
(-) DSS (+) DSS (-) DSS (+) DSS (-) DSS (+) DSS 

urine output 
(mL/12 hr) 

9.2 ± 3.5 1.2 ± 0.2* 8.4 ± 2.1 0.9 ± 0.3* 7.8 ± 2.8 1.2 ± 0.4* 

urinary total 
protein  
(mg/ 12 hr) 

2.7 ± 1.5 40 ± 6* 3.8 ± 3 179 ± 92* 2.2 ± 0.8 91 ± 37* 

urinary 
creatinine 
(mg/12 hr) 

5.7 ±  1.1 5.3 ± 0.6 5.3 ± 0.3 3.8 ± 0.8 4.1 ± 1.4 2.4 ± 0.8 

urinary 25D 
(pmol/mg) 

44 ± 11 8.5 ± 0.8 98 ± 36 16 ± 5.3 131 ± 63 89 ± 45 

urinary DBP  
(µg/ 12 hr) 

2.0 ± 1.1 12 ± 1.7* 1.2 ± 1.0 38 ± 14* 2.0 ± 1.0 37 ± 13* 

1Data are expressed as mean values ± SEMs; n=6.  Mean values within a row without a common 
letter are statistically significant (P < 0.05). 
 
2Significant differences between (-) DSS and (+) DSS rats following a Student’s t-test are 
indicated by an asterisk (P < 0.05) 
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CHAPTER 7.    GENERAL CONCLUSIONS 

Overall Summary and Conclusions 

Accumulating evidence from observational data and clinical trials have demonstrated 

an association between hypovitaminosis D and a variety of chronic diseases, including 

diabetes and inflammatory bowel disease (IBD) (1). Declining trends in circulating 25D 

concentrations may be the result of a combination of insufficient dietary intake and limited 

sunlight exposure. Individuals with diabetes and IBD are at an increased risk for vitamin D 

deficiency due to renal insufficiency and malabsorption, respectively. Moreover, vitamin D 

deficiency may exacerbate the progression of secondary disease complications (2, 3). Whole 

eggs contain high quality protein and provide several nutrients in excess of its caloric 

content. Importantly, they are one of few food sources naturally rich in vitamin D3 and 25D 

(4). The studies presented in this dissertation have demonstrated that dietary whole egg 

consumption is an effective means of increasing serum 25D concentrations in streptozotocin-

induced type 1 diabetes (T1D), a well-established model of type 2 diabetes (T2D) using 

Zucker Diabetic Fatty (ZDF) rats, and dextran sulfate sodium (DSS)-induced colitis.  

With respect to diabetes, our lab previously determined that the loss of vitamin D in 

the urine is a result of compromised renal function in ZDF rats (5), and a dietary intervention 

with resistant starch was protective against diabetic nephropathy in T1D rats (6). Results 

from the T1D study presented in this dissertation demonstrate that a dietary intervention 

incorporating dried whole eggs in the diet of streptozotocin-induced T1D rats offered similar 

protective qualities, including improved renal hypertrophy, reduced polyuria and decreased 

urinary protein and vitamin D losses, in addition to significantly raising serum 25D 

concentrations. Future studies will investigate a combinatorial diet, containing whole egg and 
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resistant starch, to determine whether these two dietary interventions result in an additive 

effect with respect to renal protection and vitamin D balance. 

Interestingly, whole egg consumption was without effect on urinary parameters in the 

T2D studies discussed in this dissertation; however, maintenance of circulating 25D 

concentrations in ZDF rats was still achieved. Importantly, we demonstrated that vitamin D 

derived from whole egg may be more effective than an equivalent amount of supplemental 

cholecalciferol added to a casein-based diet at maintaining serum 25D concentrations. 

Furthermore, in the T2D studies discussed, ZDF rats fed a whole egg-based diet exhibited a 

significant reduction in cumulative body weight gain compared to ZDF rats fed a casein-

based diet. Individuals with T2D are at an increased risk for cardiovascular disease (CVD). 

Additionally, there is a high prevalence of overweight and obesity among the T2D 

population. Treatment for T2D focuses on lifestyle and dietary modifications as a means to 

control blood glucose concentrations, reduce body weight and minimize CVD risk (7). The 

results discussed in this dissertation suggest that inclusion of whole egg in the diet of 

individuals with T2D may support efforts in attaining healthy weight goals.  

Factors accounting for vitamin D deficiency in IBD include insufficient dietary 

intake, inflammation, diarrhea and malabsorption; thus, malnutrition is common in 

individuals with IBD (8). Dietary recommendations for individuals with IBD are 

personalized and focus on restoring nutritional status and alleviating symptoms (9). The 

findings of our studies demonstrate that inclusion of dried whole egg, in the diet of rats with 

and without DSS-induced colitis, was more effective than an equivalent amount of 

supplemental cholecalciferol at increasing serum 25D concentrations. Therefore, egg 
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consumption may be an optimal source of nutrients, specifically vitamin D, to support overall 

health in individuals with IBD.  

Considering the worldwide trends in vitamin D deficiency, the findings from these 

studies demonstrate the ability of a dietary intervention to successfully and significantly 

impact circulating 25D concentrations of individuals with chronic diseases characterized by 

vitamin D deficiency. More so, improvements in vitamin D status have the potential to 

mitigate disease complications. A dose response study is currently underway to identify the 

specific quantity of egg consumption that is efficacious with respect to influencing vitamin D 

status and may support new dietary recommendations targeting vitamin D deficiency 

prevention. 
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APPENDIX    LIST OF ABBREVIATIONS 

1,25D 1,25-dihydroxycholecalciferol  

25D 25-dihydroxycholecalciferol 

APC Antigen presenting cells 

AMP Antimicrobial peptides 

BMI Body mass index 

CAS Casein-based diet 

CAS+D Casein-based diet supplemented with cholecalciferol 

CD Crohn’s Disease 

CGM Continuous glucose monitor 

CHD Coronary heart disease 

CVD Cardiovascular disease  

CYP2R1 Cytochrome p450, family 2, subfamily R, member 1 

CYP27A1 Cytochrome p450, family 27, subfamily A, member 1 

CYP27B1 Cytochrome p450, family 27, subfamily B, member 1 

Dab2 Disabled-2 

DBP Vitamin D-binding protein 

DFE dietary folate equivalent 

DPP Diabetes prevention program 

DRIP D-receptor interacting proteins 

DSS Dextran sulfate sodium 

EIM Extraintestinal manifestations 

ER Endoplasmic reticulum 
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FoxP3+ Forkhead box protein P3 positive 

FMT Fecal microbial transplant 

GI Gastrointestinal 

GFR Glomerular filtration rate 

GLUT2 Glucose transporter-2 

GLUT4 Glucose transporter-4 

HbA1c Hemoglobin A1c 

HOMA-IR Homeostatic model assessment - insulin resistance 

HLA Human leukocyte antigen 

HMG-CoA 3-hydroxy-3-methylglutaryl CoA 

HPA Hypothalamus-pituitary-adrenal 

IBD Inflammatory bowel disease 

IBD-AID Inflammatory bowel disease anti-inflammatory diet 

IEC Intestinal epithelial cells 

IgA Immunoglobin-A 

IL-1 Interleukin-1 

IL-6 Interleukin-6 

IL-10 Interleukin-10 

IOM Institutes of Medicine 

IRS Insulin receptor substrate 

miRNA MicroRNA 

NFAT5 Nuclear factor of activated T-cells 5 

NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells 
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NOD Non-obese diabetic 

NOD2 Nucleotide-binding oligomerization domain containing 2 

PTH Parathyroid hormone 

RAE Retinol activity equivalents 

RCT Randomized control trials 

RDA Recommended dietary allowance 

RXR Retinoid x receptor 

SREBP-2 Sterol regulatory element-binding protein-2 

STZ Streptozotocin 

T1D Type 1 diabetes 

T2D Type 2 diabetes 

TLR Toll-like receptors 

TMAO Trimethylamine N-oxide 

TNF-a Tumor necrosis factor-alpha 

TJ Tight junction 

UC Ulcerative colitis 

UVB Ultraviolet B 

VDR Vitamin D receptor 

VDRE Vitamin D responsive element 

VITAL The vitamin D and omega-3 trial 

WE Whole egg-based diet 

ZDF Zucker diabetic fatty 
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